首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current agricultural practice favours winter cover crops, which can not only optimize N management in field crop rotation; but also affect subsequent crops. Three field experiments were carried out in Eastern Slovenia to examine the effects of Italian ryegrass (Lolium multiflorum Lam.), winter rape (Brassica napus ssp.oleifera (Metzg.) Sinsk), subclover (Trifolium subterraneum L.), and crimson clover (Trifolium incarnatum L.) as winter cover crops on the mineral N (Nmin) content of soil and on the yield and N content of subsequent maize (Zea mays L.), fertilized with 120 kg N ha−1. Italian ryegrass and winter rape decreased soil Nmin contents before winter and in spring more than both clovers. In contrast, clovers accumulated significantly higher amounts of N in organic matter and had lower C/N ratios than winter rape and especially Italian ryegrass. In comparison to the control (bare fallow without cover crop), clovers increased the whole above ground maize dry matter yield, maize grain yield and N contents in whole above ground plants and in grain. The yields and N contents of maize following winter rape were on the same level as the control, while yields and N contents of maize following Italian ryegrass were, in two of the experiments, at the same level as the control. The effects of Italian ryegrass on the maize as subsequent crop in the third experiment were markedly negative. Maize in the control treatment exploited N much more efficiently than in treatments with cover crops. Therefore, cover crop N management should be improved, especially with a view to optimizing the timing of net N mineralization in accordance with the N demands of the subsequent crop.  相似文献   

2.
Field experiments conducted in 2007/08 and 2008/09 at the Changwu Agricultural Research Station on the Loess Plateau of China comprised three seeding rates (SR1: 225 seeds m−2, SR2: 280 seeds m−2, and SR3: 340 seeds m−2) and two root pruning treatments (W: root pruning in the over-wintering period and S: root pruning at the spring-growth stage), with the un-pruned wheat plants as controls. In the severe drought toward the end of the growing season of 2008, grain yield decreased as the seeding rate increased, but under the more favorable conditions in 2009 the reverse was true. Averaged over the seeding rates, grain yield was significantly increased in both W and S in both years; grain yield and yield components were higher in W; and S recorded the highest water use efficiency. The interaction between seeding rate and root pruning was not statistically significant. Leaf area index (LAI) and tiller density were higher as seeding rates increased whereas in W and S, increased LAI and decreased tillers significantly, but had no effect on fertile tillers. The rate of leaf photosynthesis was lower and root respiration was significantly higher at higher seeding rates, whereas in root pruning treatments, significantly higher leaf photosynthetic rate and lower root respiration were observed. Soil water contents were lower as seeding rate increased. A significant decrease in water use before stem elongation was observed in W, while S consumed less soil water than W and the control over the whole growing season. Post-heading accumulation of dry matter and its remobilization from vegetative parts to the grain was significantly greater at higher seeding rates. Post-heading accumulations of dry matter and grain yield were also significantly greater in W and S than the un-pruned plants, although pruning reduced both dry matter remobilization and its contribution to grain yield. The possibility of reducing the proliferation of roots to increase yields at higher seeding rates and conserving the soil water at different growing stages in water-limited environments is discussed.  相似文献   

3.
In intensive integrated crop-livestock farming systems, the surplus of N at the farm scale may be large and reflects on the N balance at the field scale. A study was conducted to assess the N fertilizer efficiency in four private farms in intensively cropped areas of NW Italy, and to monitor the effects of agricultural practices on the mineral N concentration of the soil solution, sampled every 2 weeks for 2 years and considered as an indicator of potential leaching. Two cultivation systems were compared in each farm, one involving continuous maize rotation, the other assuring a continuous soil cover (permanent meadow or winter cereal-maize double cropping system). The fertilization level in the arable crops was high (369–509 kg N ha−1 year−1) compared to the crop removals, and resulted in a low efficiency, as indicated by the four examined efficiency indexes (calculated N surplus, N removal-fertilizer ratio, N apparent recovery, N use efficiency). The soil-water-nitrate concentration showed large temporal variations in the range of 1–150 mg l−1 for five out of the eight cropping situations, while concentrations smaller than 10 mg l−1 were always recorded in the meadows and in one of the four soils (Aeric epiaquept). The fertilizer management that characterized each cropping system affected the soil-mineral-nitrate content in shallow arable soils. The longer soil cover duration in double-cropping systems did not result in a reduction of soil N compared to maize as a single crop, not even in winter (the bare-soil intercropping period in maize-based systems). However, the temporal oscillations of the concentration were buffered by the crop cover duration and by the presence of a shallow water table (1 m deep) in the soil profile. The average nitrate content of the soil could be predicted by the N uptake of the crop, the N removal–fertilizer ratio, the soil pH and sand content, however no simple explanatory relationship was found with the experimental factors. Hence, in farm conditions, in the absence of sufficient data for a deterministic model approach, the target of reducing the risk of leaching should be achieved by maximizing the fertilizer efficiency.  相似文献   

4.
This work was aimed at providing a sustainable approach in the use of manure in irrigated maize crop under Mediterranean climatic conditions. To this end, the effect of continuous annual applications of dairy cattle manure, combined or not with mineral N fertilizer, on the following parameters was studied: grain yield, grain and plant N concentration, N uptake by plant, N use efficiency, and soil N and organic carbon. The experiment was conducted in a furrow-irrigated sandy soil under dry Mediterranean conditions during seven years. Three different rates of cattle manure (CM): 0, 30 and 60 Mg ha−1, were applied each year before sowing. These CM rates were combined with four mineral N rates (0, 100, 200 and 300 kg N ha−1) applied at sidedress.On average, the highest grain yields during the 7 years were obtained with the combination of CM at 30 Mg ha−1 and mineral fertilizer and with CM at 60 Mg ha−1 without mineral fertilizer. With CM at 30 Mg ha−1, mineral fertilizer increased yields during most of the growing seasons, meanwhile with CM at 60 Mg ha−1, there was not any significant effect of the joint application of mineral fertilizer on yields. Overall, best results were obtained exceeding maximum rates according to present legislation. The mean apparent nitrogen recovery (ANR) fraction during the 7 seasons was 29% for N exclusively applied as CM. Overall, increased N rates applied as CM resulted in decreased ANRs. However, ANR with CM at 30 and 60 Mg ha−1 increased during the first two seasons. This increased ANR ascribed to mineralization of residual organic N applied in previous seasons explained the increasing yields observed in the treatments along the study.The application of CM during 7 years increased the soil organic carbon in the first 30 cm by 5.7 and 9.9 Mg ha−1 with CM at 30 and 60 Mg ha−1, respectively, when compared to the initial stock. Thus, manure-based fertilization could be an alternative to mineral fertilizer in order to achieve high maize yields while improving soil quality under dry Mediterranean conditions.  相似文献   

5.
不同氮效率玉米基因型苗期对光和氮响应的研究   总被引:3,自引:0,他引:3  
对氮效率表现差异显著的三个玉米自交系幼苗采用不同光强和氮浓度处理,比较根冠比、生物产量、硝酸还原酶和谷氨酰胺合成酶的响应差异。结果表明:不同氮效率自交系对不同氮浓度与光照强度处理的响应存在显著差异;氮低效材料在低光低氮条件下的生物产量表现比氮高效材料好,在高光高氮条件下时生物产量表现比氮高效差;氮高效材料随着氮浓度增加比氮低效材料更能保持根的发达性,表明根系是氮高效的保证。不同氮效率自交系生物产量和硝酸还原酶光氮最佳耦合点值不同,氮低效自交系出现光氮最佳耦合点时所需要的氮浓度(或光强)要比氮高效自交系低。因此,玉米基因型氮效率的发挥不但需要适宜的供氮水平,还需要合适的光照强度。  相似文献   

6.
乙烯对玉米生长发育与形态建成具有重要调控作用,但乙烯对玉米氮素吸收与积累调控效应缺乏深入研究,局限了乙烯在玉米丰产高效栽培中的应用。本研究以郑单958、瑞福尔1号和德美亚3号3个玉米品种为试验材料,比较研究不同基因型玉米植株对氮素供给的响应差异,结合外源添加乙烯合成前体1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylicacid,ACC),分析乙烯对不同基因型玉米氮素吸收的调控效应。研究结果表明,在低氮条件下,氮素敏感型品种(德美亚3号和瑞福尔1号)比郑单958叶片缺氮表型明显,对ACC处理敏感,而且ACC处理抑制玉米植株地上和地下部的生长和干物质积累;ACC处理抑制了低氮下叶片叶绿素合成,降低叶片可溶性蛋白积累,促进玉米叶片早衰,其中ACC处理郑单958叶片叶绿素和可溶性蛋白含量均显著高于德美亚3号和瑞福尔1号;进一步研究发现,低氮处理抑制乙烯合成关键酶基因ZmACS7和ZmACO15的表达,降低乙烯含量,ACC处理促进低氮条件下ZmACS7和ZmACO15基因的表达,提高乙烯含量;低氮处理抑制玉米根系中ZmNRT2.1表达,但ACC处理促进低氮下玉米根系中ZmNRT2.1表达,其中郑单958根中ZmNRT2.1表达在低氮条件下显著高于德美亚3号和瑞福尔1号。研究结果表明乙烯通过调控玉米植株乙烯合成关键酶基因和ZmNRT2.1表达,调节了氮素吸收与分配,影响了植株生长,其中氮素敏感性品种比持绿型品种对乙烯更为敏感。  相似文献   

7.
长期定位施肥对夏玉米氮代谢的影响   总被引:4,自引:1,他引:4  
基于 30年的长期定位试验, 研究了长期定位施肥对夏玉米氮代谢的影响。随施肥量增加,氮代谢旺盛,吐丝后穗位叶NR活性高,其中M2N2处理NR活性平均比对照提高了4.0%,其次是M2N1、N2PK、M1N2,分别比对照提高了3.7%、3.4%、3.1%。穗位叶的游离氨基酸和蛋白质含量也表现为与NR活性类似的趋势。M2N2处理游离氨基酸和蛋白质含量与对照比较差异显著。分别比对照提高了19.6%和22.2%。其次M2N1、N2PK、M1N2处理。游离氨基酸含量分别比对照提高了17.9%、16.7%、和15.4%。蛋白质含量分别比对照提高了18.5%、18.4%和17.9%。有机肥氮肥配施处理,穗位叶NR活性在籽粒形成期间维持高活性时间长,穗位叶中的可溶性蛋白含量高。氮磷钾肥配施处理穗位叶NR活性、可溶性蛋白含量显著高于氮磷、氮钾处理。  相似文献   

8.
氮肥运筹方式对豫单2002产量及品质的影响   总被引:7,自引:0,他引:7  
【研究目的】该研究旨在为豫单2002的推广应用提供施肥技术支撑,为高产高蛋白夏玉米氮肥合理运筹肥提供理论与技术依据。【方法】在豫北潮土区高产田块上,采用田间试验,设N0(不施氮肥)、N1(攻杆肥100%)、N2(攻穗肥100%)、N3(攻杆肥40%+攻穗肥60%),N4(攻杆肥30%+攻穗肥50%+攻粒肥20%)五个处理开展研究。【结果】结果表明:氮肥不同运筹方式增产效果差异显著,其中N3处理增产效果最好,其次是N1处理和N4处理,N2处理增产效果最小;分次施肥有于提高籽粒粗蛋白含量,且随着施肥次数的增加,籽粒粗蛋白含量呈上升趋势;分次施肥亦有利于提高籽粒蛋白质产量,不同处理以N3最佳,其次为N4;氮肥不同运筹方式肥料利用率差异显著,其中N3处理最高,其次为N4和N1处理,而N2最低。【结论】N3处理由于有效地促进了植株对氮素的吸收利用,增加显著地产量和提高了籽粒蛋白质产量,一定程度上提高了籽粒蛋白质含量,因而为最佳氮肥运筹方式。  相似文献   

9.
针对华北平原冬小麦-夏玉米轮作体系存在过量的水、氮投入问题,本研究于2008 -2010年在河北吴桥设置了传统水氮、传统水氮调整、节水减氮和最少水氮4个水氮模式,以分析减少水氮投入后冬小麦-夏玉米体系的产量、氮素利用和土壤氮残留情况.结果表明:与传统水氮相比,节水减氮模式的氮肥投入量下降55%,水分投入量下降36.6%...  相似文献   

10.
The expansion of biogas production from anaerobic digestion in the Po Valley (Northern Italy) has stimulated the cultivation of dedicated biomass crops, and maize in particular. A mid-term experiment was carried out from 2006 to 2010 on a silt loamy soil in Northern Italy to compare water use and energy efficiency of maize and sorghum cultivation under rain fed and well-watered treatments and at two rates of nitrogen fertilization. The present work hypothesis were: (i) biomass sorghum, for its efficient use of water and nitrogen, could be a valuable alternative to maize for biogas production; (ii) reduction of irrigation level and (iii) application of low nitrogen fertilizer rate increase the efficiency of bioenergy production. Water treatments, a rain fed control (I0) and two irrigation levels (I1 and I2; only one in 2006 and 2009), were compared in a split–split plot design with four replicates. Two fertilizer rates were also tested: low (N1, 60 kg ha−1 of nitrogen; 0 kg ha−1 of nitrogen in 2010) and high (N2, 120 kg ha−1 of nitrogen; 100 kg ha−1 of nitrogen in 2010). Across treatments, sorghum produced more aboveground biomass than maize, respectively 21.6 Mg ha−1 and 16.8 Mg ha−1 (p < 0.01). In both species, biomass yield was lower in I0 than in I1 and I2 (p < 0.01), while I1 and I2 did differ significantly. Nitrogen level never affected biomass yield. Water use efficiency was generally higher in sorghum (52 kg ha−1 mm−1) than in maize (38 kg ha−1 mm−1); the significant interaction between crop and irrigation revealed that water use efficiency did not differ across water levels in sorghum, whereas it significantly increased from I0 and I1 to I2 in maize (p < 0.01). The potential methane production was similar in maize and sorghum, while it was significantly lower in I0 (16505 MJ ha−1) than in I1 and I2 (21700 MJ ha−1). The only significant effect of nitrogen fertilization was found in the calculation of energy efficiency (ratio of energy output and input) that was higher in N1 than in N2 (p < 0.01). These results support the hypothesis that (i) sorghum should be cultivated rather than maize to increase energy efficiency, (ii) irrigation level should replace up to 36% of ETr and (iii) nitrogen fertilizer rate should be minimized to maximize the efficiency in biomass production for anaerobic digestion in the Po Valley.  相似文献   

11.
Genetic variation for traits relating to nitrogen content of maize stalks   总被引:1,自引:0,他引:1  
Summary The objective of this research was to obtain information about expression of genes controlling N concentration in the lower stalk internodes of maize at silking stages and in two other stages during the grain filling period. The inheritance of nitrate-N concentration, total N concentration, and the nitrate-N/total N ratio in the lower stalk internodes was measured in an eight-line diallel cross experiment and in an experiment involving segregating generations. The results show that the parameters examined, particularly nitrate-N concentration, are genetically controlled and that maize plants differ in this respect. Moreover, the magnitude of the general combining ability effects in relation to the size of specific combining ability obtained from the diallel analysis and the mean squares of the analysis of variance of generation means indicated additive heritability of nitrate-N concentration and other N-related traits in maize stalks. These findings suggest to us that a cyclic selection program in maize should be effective in modifying the level of N-related traits concentration in the stalks.  相似文献   

12.
Z. H. Liu    H. L. Xie    G. W. Tian    S. J. Chen    C. L. Wang    Y. M. Hu    J. H. Tang 《Plant Breeding》2008,127(3):279-285
A set of 213 F2:3 families were used to investigate the effects of nitrogen (N) on grain yield and the concentrations of three nutrient components in maize (Zea mays L.) kernels. A genetic linkage map was constructed using 189 SSR (simple sequence repeat) markers, spanning a total of 2003 cM, including 11 linkages, and the families were evaluated under high N and low N conditions at two farm locations. The results indicate that low N conditions may induce an increase in starch concentration, but a decrease in protein levels. Twenty‐six quantitative trait loci (QTL) were detected for four measured traits in the two N treatments at both locations, including eight QTL for grain yield, seven QTL for oil content, six QTL for protein content and five QTL for starch content. The total number of QTL detected for the four measured traits under high N levels was greater than the QTL detected under low N conditions, and several QTL were identified that specifically expressed under different N conditions. These particular QTL could help provide greater understanding of the genetic basis of N‐usage efficiency.  相似文献   

13.
有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响   总被引:2,自引:0,他引:2  
针对宁夏扬黄灌区沙质土壤肥力贫瘠、养分利用率低以及农田生产力弱等问题。通过两年连续田间定位试验,采用裂区试验设计,主处理为不施有机肥(+M)处理和施有机肥3000kghm^-2(+M)处理,副处理为施纯氮0(N0)、75(N75)、150(N125)、225(N225)和300kghm^-2(N300)5个不同氮肥用量,进行滴灌条件下有机肥与氮肥配合施用对玉米产量及土壤肥力状况的研究,探讨施肥对土壤养分、玉米产量的影响,以选择最佳的肥料配比,从而达到玉米高产、优质和土壤培肥的目的。结果表明,有机肥配施氮肥能有效增加土壤有机质、全氮、全磷、速效钾和速效磷含量,促进春玉米干物质累积并提高产量,以有机肥配施纯氮300kghm^-2和225kghm^-2处理的培肥效果最佳。有机肥配施氮150、225和300kghm^-2处理间的玉米产量无显著差异,但较不施氮肥处理产量分别提高了74.21%、91.33%和81.23%,施有机肥处理较不施有机肥处理平均增产24.28%。在试验区的推荐施肥量为3000kghm^-2有机肥配施225~300kghm^-2氮肥。  相似文献   

14.
滴灌玉米临界氮稀释曲线与氮素营养诊断研究   总被引:4,自引:0,他引:4  
旨在建立宁夏引黄灌区滴灌玉米临界氮稀释曲线模型,探讨氮营养指数(NNI)用于实时诊断和评价玉米氮素营养状况的可行性,为实现滴灌玉米合理施用氮肥提供理论依据。以天赐19为试验材料,采用滴灌水肥一体化技术,设6个氮肥水平,利用2年定位试验构建并验证了临界氮稀释曲线模型。结果表明:(1)在一定范围内,滴灌玉米干物质积累量随施氮水平的提高而增加,根据方差分析结果,将玉米各生育时期的地上部生物量分为限氮和非限氮2类;(2)滴灌玉米植株氮浓度均随着施氮量的增加而提高,但随生育期的推进和地上部干物质量的增加,玉米植株氮浓度均呈下降趋势;(3)滴灌玉米临界氮浓度(Nc)、最大氮浓度(Nmax)和最小氮浓度(Nmin)稀释模型与地上部干物质累积量之间均呈现幂函数关系,其决定系数R2分别为0.982、0.907、0.918,利用均方根误差(RMSE)和标准化均方根误差(n–RMSE)的验证表明,该模型稳定性好,误差范围小;(4)氮素营养指数模型(NNI)可衡量滴灌玉米氮素营养状况,滴灌水肥一体化条件下,宁夏引黄灌区玉米以270kghm–2为最佳施氮量;(5)根据模型推算,NNI与相对吸氮量(RNupt)、...  相似文献   

15.
The purpose of this work was to determine the influence of municipal solid waste (MSW) compost application on soil properties, nitrogen availability to plants and its uptake efficiency. The paper deals with results of a three-year field experiment where two different MSW composts were non-recurrently applied to sandy soil at rates of 18, 36 and 72 t ha−1 (dry mass). Plots without fertilisation as well as plots fertilised each year with mineral forms of NPK were the controls, and spring triticale was cultivated in a monoculture on all plots as a test plant. Soil properties, plant yield and nitrogen content in grain and straw were determined at harvest, and on this basis the applied nitrogen uptake efficiency was calculated. During the first year, only the plots with the highest dose of the better-quality compost had yields similar to the plots fertilised with mineral NPK. Following the years of the experiment, all the plots treated with compost had distinctly lower yields than the plots fertilised with mineral NPK. That decrease was accompanied by a decrease in the nitrogen content in straw and grain, in spite of the fact that the soil material indicated a similar content of total nitrogen to those fertilised with NPK. This indicates that organic matter brought into the soil with MSW compost was intensively mineralised, releasing a considerable amount of nitrogen. However, the plant response indicated a shortage of the plant-available forms of this element. The efficiency of compost-originated nitrogen uptake by plants was very low, at less than 7% of the applied nitrogen. This indicates that plants can take up only a limited amount of nitrogen released from the compost, while considerable amounts are emitted into the atmosphere.  相似文献   

16.
The effect of two different nitrogen treatments on five traits associated with yield and nutrient composition of stover were evaluated using a set of 213 F2:3 families derived from two elite inbred lines Huang-C and Xu178. Evaluation of the phenotypes expressed under the two nitrogen conditions showed that low nitrogen conditions could increase acid detergent fiber (ADF) and neutral detergent fiber (NDF), and decreased crude protein content (CP), crude fat content (CF), and stover yield (SY), thereby negatively affecting the digestibility and quality of silage maize. Twenty-eight quantitative trait loci (QTL) were identified affecting the five measured traits under two nitrogen conditions, including four for ADF, five for NDF, five for CP, four for CF, and three for SY. Several QTL associated with ADF or NDF were detected under same nitrogen conditions, and were localized to the same chromosomal regions, especially the QTL qADF6 and qNDF6, qADF10 and qNDF10, were only detected under low nitrogen condition. These results suggested that ADF and NDF perhaps were controlled by several common genes, and that the nutritional content of stover may be influenced by additional genetic mechanisms when grown under conditions of low nitrogen.  相似文献   

17.
不同耐低氮性玉米品种的花后碳氮积累与转运特征   总被引:1,自引:0,他引:1  
为了探明不同耐低氮性玉米品种生育后期碳、氮物质积累与转运特性及其对氮肥响应的差异,以期为品种高效施氮技术的制定提供理论依据。以耐低氮品种‘正红311’(Zhenghong311,ZH311)和低氮敏感品种‘先玉508’(Xianyu 508, XY508)为材料,设置4个氮肥用量(0、150、300和450 kg hm–2),于2017—2019年研究氮肥水平对不同耐低氮性玉米品种生育后期物质,包括干物质、全氮和非结构性碳水化合物(non-structural carbohydrate, NSC)积累和转运的影响。结果表明,供氮不足时,玉米通过增加花前贮存碳、氮物质对籽粒的转运以保证产量。增施氮肥能够提高玉米花后干物质和碳水化合物生产及其对籽粒质量的贡献率。与低氮敏感品种先玉508相比,在低氮条件下,耐低氮品种正红311在花前、花后均保持较高的植株干物质、NSC和氮素量,花后物质积累量及其对籽粒质量的贡献率更高,从而拥有更高的籽粒产量;品种间花前物质转运率及其对籽粒质量的贡献率差异不大。面对低氮胁迫,正红311既保证了花前贮存物质充分向籽粒运输,同时维持着较高的同化物积累能力来影响其产量形成。  相似文献   

18.
The introduction of new hybrids and integrated crop-soil management has been causing maize grain yield to increase. However, less attention has been paid on the nutrient concentration of the grain; this aspect is of great importance to supplying calories and nutrients in the diets of both humans and animals worldwide. Increasing the retranslocation of nutrients from vegetative organs to grain can effectively increase the nutrient concentration of grain and general nutrient use efficiency. The present study involved monitoring the dynamic change of macro- and micronutrients in different organs of maize during the grain filling stage. In addition, the mobility of different elements and their contribution to grain nutrient content were evaluated in a 2-year experiment under low (LN, no N supplied) and high N (HN, 180 kg N ha−1) supply. Under HN supply, the net remobilization efficiency (RE) of the vegetative organs as a whole (calculated as nutrient remobilization amount divided by nutrient content at silking) of N, P, K, Mn, and Zn were 44%, 60%, 13%, 15%, and 25%, respectively. The other nutrients (Mg, Ca, Fe, Cu, and B) showed a net accumulation in the vegetative organs as a whole during the grain filling stage. Among the different organs, N, P, and Zn were remobilized more from the leaves (RE of 44%, 51% and 43%, respectively) and the stalks (including leaf sheaths and tassels) (RE of 48%, 71% and 43%, respectively). K was mainly remobilized from the leaves with RE of 51%. Mg, Ca, Fe, Mn, and Cu were mostly remobilized from the stalks with the RE of 23%, 9%, 10%, 42%, and 28%, respectively. However, most of the remobilized Mg, Ca, Fe, Mn, Cu, and Zn were translocated to the husk and cob, which seemingly served as the buffer sink for these nutrients. The REs of all the nutrients except for P, K, and Zn were vulnerable to variations in conditions annually and were reduced when the grain yield and harvest index were lower in 2014 compared with 2013. Under LN stress, the RE was reduced in P and Zn in 2013, increased in Cu and unchanged in other nutrients. The concentration of these nutrients in the grain was either unchanged (P, K, Ca, Zn, and B) or decreased (N, Mg, Fe, Mn, and Cu). It is concluded that grain N, P, K, Mn, and Zn, but not Mg, Ca, Fe, Cu, and B concentration, can be improved by increasing their remobilization from vegetative organs. However, enhancing the senescence of maize plant via LN stress seems unable to increase grain mineral nutrient concentration. Genetic improvement aiming to increase nutrient remobilization should take into account the organ-specific remobilization pattern of the target nutrient.  相似文献   

19.
The sustainability of growing a maize—winter wheat double crop rotation in the North China Plain (NCP) has been questioned due to its high nitrogen (N) fertiliser use and low N use efficiency. This paper presents field data and evaluation and application of the soil–vegetation–atmosphere transfer model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses to optimise the N fertiliser rate for maize and winter wheat under different field managements including straw incorporation.The model sensitivity analysis indicated that a few measurable crop parameters impact the simulated yield, while most of the studied topsoil parameters affect the simulated nitrate leaching. The model evaluation was overall satisfactory, with root mean squared residuals (RMSR) for simulated aboveground biomass and nitrogen content at harvest, monthly evapotranspiration, annual drainage and nitrate leaching out of the root zone of, respectively, 0.9 Mg ha−1, 20 kg N ha−1, 30 mm, 10 mm and 10 kg N ha−1 for the calibration, and 1.2 Mg ha−1, 26 kg N ha−1, 38 mm, 14 mm and 17 kg N ha−1 for the validation. The values of mean absolute deviation, model efficiency and determination coefficient were also overall satisfactory, except for soil water dynamics, where the model was often found erratic. Re-validation run showed that the calibrated Daisy model was able to simulate long-term dynamics of crop grain yield and topsoil carbon content in a silty loam field in the NCP well, with respective RMSR of 1.7 and 1.6 Mg ha−1. The analyses of the model and the field results showed that quadratic, Mitscherlich and linear-plateau statistical models may estimate different economic optimal N rates, underlining the importance of model choice for response analyses to avoid excess use of N fertiliser. The analyses further showed that an annual fertiliser rate of about 300 kg N ha−1 (100 for maize and 200 for wheat) for the double crop rotation with straw incorporation is the most optimal in balancing crop production and nitrate leaching under the studied conditions, given the soil replenishment with N from straw mineralisation, atmospheric deposition and residual fertiliser.This work provides a sound reference for determining N fertiliser rates that are agro-environmentally optimal for similar and other cropping systems and regions in China and extends the application of the Daisy model to the analyses of complex agro-ecosystems and management practices under semi-arid climate.  相似文献   

20.
连作秸秆还田下玉米氮素积累与氮肥替代效应研究   总被引:2,自引:0,他引:2  
针对东北地区农作物秸秆资源丰富,然而焚烧弃置严重,养分利用率较低等问题,探讨常年玉米连作下还田秸秆的氮肥替代效应在松嫩平原玉米种植生产上的可行性。试验于2017—2019年在东北农业大学校内试验场进行,采用框栽、连作方式,采用再裂区试验设计,主处理为秸秆不还田(S0)和秸秆还田(S1),副处理为3个施尿素梯度0(N0)、175 (N1)、350 (N2) kg hm–2,再副处理为一次性施肥(基追比1∶0)和2次均匀施肥(基追比1∶1)。结果表明,每公顷还12 t玉米秸秆可替代单质氮36.80 kg, 2017—2019年黑龙江省产生的玉米秸秆量平均为4650.05万吨,秸秆还田可替代单质氮14.27万吨。在2次均匀施氮肥处理下,秸秆氮肥替代量比一次性施氮肥处理高26.88%。秸秆还田与玉米氮肥利用率负相关,在当地农业常用施尿素量350 kg hm–2 (纯氮161 kg hm–2)下,玉米氮肥利用率3年平均S0较S1高6.09%,产量S1较S0高4.66%,且在秸秆还田、2次等量施氮肥处理玉米产量最高为268.22 g...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号