首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A composting experiment was carried out to study changes in physical [color, odor, temperature, organic matter (OM) loss], chemical [C:N ratio, water-soluble organic carbon (Cw):organic N (Norg) ratio, NH4 +-N and NO3 ?-N, humic acid (HA):fulvic acid (FA) ratio, humification index (HI) and cation-exchange capacity (CEC):total organic carbon (TOC) ratio)] and biological [seed germination index (GI)] parameters to assess compost maturity and stability over a period of 150 days. Five composts were prepared using a mixture of different farm wastes with or without enrichment of N, rock phosphate (RP) and microorganism (MO) inoculation. All the composts appeared to change to a granular and dark grey color without foul odor, and attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss > 42%, C:N ratio < 15, HA:FA ratio > 1.9, HI > 30%, CEC:TOC ratio > 1.7 and Cw:Norg ratio < 0.55. Composts enriched with N + RP or N + RP + MO matured at 150 and 120 days, respectively, whereas composts without any enrichment or enrichment with N or RP + MO did not mature even at 150 days of composting.  相似文献   

2.
Bioconversion of farm wastes with agro-industrial wastes into enriched compost is an important possibility in need of research. In this article, changes in chemical and microbiological parameters were evaluated to determine the maturity of composts prepared from mixture of farm and agro-industrial wastes over a period of 150 days. Seven different composts were prepared by using a mixture of different farm wastes with or without enrichment with rock phosphate (RP), agro-industrial wastes and the inoculation of microorganisms. As composting proceeded, the organic C, water-soluble C (WSC), bacterial and fungal counts decreased, whereas total N, P, electrical conductivity (EC) and actinomycetes count increased gradually. Our results suggest that WSC <1%, C:N ratio < 20, neutral pH and a decrease in bacteria and fungal counts, along with an increase in actinomycetes count and stability at the end of composting, may be accepted as an indicator of compost maturity. Changes in organic C, EC, total N and P concentrations over time also proved to be reliable indicators of the progress of the composting process for establishing stability and compost maturity. Addition of RP, agro-industrial wastes and inoculation of microorganisms showed potential in improving the N and P contents of the composts.  相似文献   

3.
Abstract

An attempt was made to estimate the degree of maturity of city refuse composts by measuring their cation-exchange capacity (CEC).

The CEC of the city refuse compost increased for the first 7 days after commencement of the fermentation process, decreased for the next 2 days, and then increased again gradually up to the end of the piling period.

A highly significant negative correlation was noted between the CEC and C/N ratio of the city refuse composts (r=-0.903***). Regression analysis yielded the relationship: In CEC=7.02-1.02 In C/N

The CEC values of the city refuse composts, which were considered to have been sufficiently matured for application, were greater than about 60 me/ 100 g of ash-free material.  相似文献   

4.
An improved method for the determination of pectin degree of esterification (DE) by diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was developed. Pectin samples with a range of DE as determined by gas chromatography were used for developing a calibration curve by DRIFTS. A linear relationship between the DE of pectin standards and FTIR peak ratio for ester carboxyl peak area to total carboxyl peak area was found (R(2) = 0.97). Pectin DE of various samples was calculated from the linear fit equation developed by DRIFTS. Accuracy of the DRIFTS method was determined by comparing the DE values of four commercial pectins obtained by DRIFTS methods to the values obtained by the gas chromatography method. Greater precision was obtained for the FTIR measurement of test pectin samples when the ester peak ratio was used relative to the ester peak area.  相似文献   

5.
The conformation of oat globulin dispersions (10% in D2O) under the influence of pH, chaotropic salts, protein structure perturbants, and heating conditions was studied by Fourier transform infrared (FTIR) spectroscopy. The FTIR spectrum of oat globulin showed major bands from 1670 to 1634 cm(-1), corresponding to the four major types of secondary structures, that is, beta-turns, beta-sheets, alpha-helices, and random coils. At extreme acidic and alkaline pH conditions, there were changes in intensity in the bands attributed to beta-sheet structures (1626, 1634, and 1682 cm(-1)), and shifts of the bands to higher or lower wavenumbers, indicating changes in conformation. In the presence of some chaotropic salts, the 1626 and 1634 cm(-1) bands were shifted upward, with a marked decrease in the intensity of the 1634 cm(-1) peak. The addition of several protein structure perturbants led to a slight shift in the alpha-helix/random coil bands and a marked reduction in the beta-sheet peaks, suggesting protein unfolding. Heating under aggregating conditions led to slight shifts in all of the major bands and progressive changes in the intensity of the alpha-helix, beta-sheet, and beta-turn peaks, suggesting protein denaturation. This was accompanied by marked increases in intensity of the two intermolecular beta-sheet bands (1682 and 1624-1626 cm(-1)) associated with the formation of aggregated strands. The IR spectra of soluble and insoluble aggregates showed a redistribution of native and extensively denatured proteins in the two fractions.  相似文献   

6.
Pressure-induced conformational changes in D(2)O solutions of the two genetic variants of beta-lactoglobulin A (beta-lg A) and beta-lactoglobulin B (beta-lg B) and an equal mixture of both variants (beta-lg A+B) were studied by employing variable-pressure Fourier transform infrared (VP-FTIR) spectroscopy. Changes in the secondary structure of beta-lg A were observed at lower pressure compared to beta-lg B, indicating that beta-lg A had a more flexible structure. During the decompression cycle beta-lg A showed protein aggregation, accompanied by an increase in alpha-helical conformation. The changes in the secondary structure of beta-lg B with the pressure were minor and for the most part reversible. Upon decompression no aggregation in beta-lg B was observed. Increasing the pressure from 0.01 to 12.0 kbar of a solution containing beta-lg A+B resulted in substantial broadening of all major amide I bands. This effect was partially reversed by decreasing the hydrostatic pressure. beta-lg A+B underwent less aggregate formation than beta-lg A, possibly as a result of protein-protein interactions between beta-lg A and beta-lg B. Hence, it is likely that the functional or biological attributes of beta-lg proteins may be affected in different ways by hydrostatic pressure.  相似文献   

7.
Drying oils, such as linseed oil and tung oil, have the potential as coating materials to improve barrier properties of biobased packaging films. Oil drying is a chemical reaction in which polyunsaturated fatty acids undergo autoxidation. During drying, oils polymerize and form water-resistant films. However, drying rates tend to be too slow for practical applications. Metal driers are used in the paint industry to accelerate drying, but often driers are not safe for food contact. The objective of this work was to investigate the effect of ionizing radiation on the oxidation or drying rate of drying oils. The effect of irradiation dose on the drying rate of linseed and tung oils was monitored by FTIR spectroscopy. The peak at 3010 cm (-1) was found to be a useful index of oxidation rate. The decrease in peak intensity with time was fitted with exponential functions of the form Abs = Abs 0 exp (- t/ k), where Abs 0 is the initial absorbance and 1/ k is the rate constant for the oxidation process. Values for k were 9.91 ( R (2) = 0.98), 6.59 ( R (2) = 0.95)n and 6.44 ( R (2) = 0.97) for radiation levels of 0, 50, and 100 kGy, respectively. The k values suggested that the oxidation rate increased as the radiation dose increased from 0 to 50 kGy. A further increase to 100 kGy had only a limited effect.  相似文献   

8.
In this study, Brazilian coffee beans processed to different stages of roast at 210, 220, 230, and 240 °C were analyzed for pH value, titratable acidity, moisture content, and color lightness. Fourier transform infrared (FTIR) spectroscopy, in conjunction with principal component analysis, was conducted to study the effects of process time and temperature on the IR-active components of the acetyl acetate extract of the roasted coffee. The results showed that high-temperature-short-time resulted in higher moisture content, higher pH value, and higher titratable acidity when the beans were roasted beyond the start-of-second-crack stage, as compare to low-temperature-long-time process (LTLT). The LTLT process also resulted in greater IR absorbance for aldehydes, ketones, aliphatic acids, aromatic acids, and caffeine carbonyl bands on the FTIR spectra. Clusters for principal component score plots were well separated, indicating that the changes IR-active components in the coffee extracts, due to the different roasting treatments, can be discriminated by the FTIR technique. On the basis of the loading plots of principal components, changes of IR-active compounds in the coffee extract at various stages of roasting were discussed.  相似文献   

9.
畜禽粪便热解气体的红外光谱分析   总被引:1,自引:1,他引:0  
为了解畜禽粪便热解过程析出气体的主要成分以及气体析出规律,该文在30℃/min的升温速率条件下进行了猪粪、牛粪、羊粪和鸡粪的热解试验,利用傅里叶变换红外光谱(FTIR)技术对热解过程中气体产物的排放特性进行了分析。试验结果表明,畜禽粪便气体产物主要在250~500℃析出,其主要成分为H2O,CO,CO2和CH4等,其中H2O、CO和CO2的析出峰为双峰,H2O和CO2均在350℃附近形成最大析出峰,H2O约在150℃形成第1个析出峰,CO2约在710℃附近形成的第2个析出峰,CO在350℃处形成第一个析出峰,其最大析出峰形成于710℃处左右,CH4析出特性为一单峰,在530℃附近形成最大峰值。该文研究结果为热解反应器的设计和优化提供参考。  相似文献   

10.
In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot‐water‐ and sodium‐pyrophosphate‐extractable organic matter was analysed by Fourier transform infrared (FT‐IR) spectroscopy. For the sandy forest soil, the FT‐IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740–1710 cm?1 and 1640–1600 cm?1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot‐water‐soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water‐soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors.  相似文献   

11.
We present the results of a Fourier transform infrared (FT-IR) microspectroscopic study using conventional FT-IR microscopy and FT-IR imaging to detect the denaturation process during four different heating temperatures (raw, 45, 60, and 70 degrees C) spatially resolved in bovine cryosections from longissimus dorsi muscle. FT-IR imaging, employing a focal plane array detector, which allowed the simultaneous collection of spectra at 4096 pixels, enabled the investigation of the heat-induced changes in the two major meat constituents, i.e., myofibrillar and connective tissue proteins, spatially resolved. The infrared spectra of both compounds revealed that the major spectral changes involved an increase in beta-sheet and a decrease in alpha-helical structures, which appeared to be much more pronounced for the myofibers than for the connective tissue. These conformational changes could be correlated to the denaturation of the major meat proteins, such as myosin, actin, and collagen.  相似文献   

12.
木屑快速热裂解生物油特性及其红外光谱分析   总被引:5,自引:2,他引:5  
该文以杨木木屑快速热裂解制取的生物油为原料,对其进行了理化特性研究及傅立叶变换红外光谱(FTIR)分析,同时和甜高粱茎秆残渣热裂解生物油的特性进行了比较。结果表明,木屑生物油含水率较低(25.01%),热值较高(20.62 MJ/kg),常温下运动黏度为3.44 mm2/s,密度、灰分含量和残炭值分别为1072 kg/m3,0.305%,12.74%,且呈明显的酸性(pH=3.07)。随着温度的升高(25~100℃),木屑生物油运动黏度明显降低。木屑生物油的较低含水率和较高热值,使其在应用方面优于甜高粱茎秆残渣生物油。然而,从傅立叶变换红外光谱图上不同位置的吸收峰可以判断木屑生物油含有多种官能团,实际应用之前需要进一步的精制。  相似文献   

13.
The purity and composition of commercial carrageenans vary widely and, therefore, have to be checked prior to their use in the food industry. Infrared spectroscopy is an alternative method to the expensive and time-consuming wet chemical and NMR methods to characterize carrageenan samples. The use of an attenuated total reflection accessory coupled to a Fourier transform infrared spectrophotometer allows a direct analysis of the sample without any preparation step, which is an additional benefit for the rapid identification check of raw material at reception in an industrial environment. Using a set of calibration samples, three multivariate calibrations were developed to predict the total carrageenan content as well as the molar ratio of kappa- and iota-carrageenans. A validation with an independent set of samples confirmed the robustness of the calibrations and the accuracy of the predictions. The accuracies of the calibrations given by their respective standard errors of prediction are 5.6 g/100 g, and 6.1 mol %, and 6.6 mol %, respectively, for the total carrageenan content and the molar ratios of kappa- and iota-carrageenans. The total preparation and analysis time is <5 min per sample.  相似文献   

14.
We studied nine composts derived from wastes and by-products of the olive oil, wine, and Agaricus mushroom agro-industries. They were mixed with peat at 1:3 w w −1 ratios and comparatively evaluated in pot experiments to assess suppressiveness against soil-borne and foliar pathogens of tomato. All compost amendments demonstrated high levels of suppressiveness against Phytophthora nicotianae Breda de Haan in tomato, when they were applied directly after curing (T0) indicating the occurrence of a “general suppression phenomenon” (81–100% decrease in plant disease incidence). They were, however, relatively less effective when applied 9 months after curing (T1, 55–100% disease decrease). Suppressiveness against Fusarium oxysporum f.sp. radicis-lycopersici Jarvis & Shoemaker was relatively lower and varied widely among composts (8–95% and 22–87% decrease in plant disease incidence for T0 and T1, respectively). Three of the composts conferred induced systemic resistance against the foliar pathogen Septoria lycopersici Speg. Biotic properties were determined, including respiration, fluorescein diacetate hydrolysis, and β-glucosidase activity of composts. The comparative evaluation of the nine composts revealed no shared critical biotic or abiotic characteristics indicative of their suppressive effects on the soil-borne and foliar pathogens. The complex origin of compost suppressiveness is discussed and the implementation of individual evaluation of each compost product for a specific use is advocated.  相似文献   

15.
Monovarietal white wines from Maria Gomes and Bical Portuguese Bairrada varieties were prepared according to different maceration and pectic enzyme clarification procedures. The polysaccharide-rich extracts, obtained by wine concentration, dialysis, and lyophilization, were fractionated by graded ethanol precipitation. A wide range of fractions rich in polysaccharides were obtained. Using the spectral region between 1200 and 800 cm(-)(1) of the FTIR spectra of the wine polysaccharide dry extracts, using PCA and CCA chemometric methods, it was possible to discriminate the extracts on the basis of their polysaccharide composition. Moreover, it was possible to identify the wine-making processes involved and their influence on the wine polysaccharides. Furthermore, a calibration model using a PLS1 was proposed for the quantification of mannose in the samples obtained by precipitation with 60% ethanol aqueous solutions. This information will allow an expeditious assessment and monitoring of the polysaccharide composition and modifications that occur during the wine-making processing and evolution.  相似文献   

16.
Fourier transform infrared spectroscopy (FT-IR, 4000-600 cm(-)(1)) was used to discriminate between intact and sonication-injured Listeria monocytogenes ATCC 19114 and to distinguish this strain from other selected Listeria strains (L. innocua ATCC 51742, L. innocua ATCC 33090, and L. monocytogenes ATCC 7644). FT-IR vibrational overtone and combination bands from mid-IR active components of intact and injured bacterial cells produced distinctive "fingerprints" at wavenumbers between 1500 and 800 cm(-)(1). Spectral data were analyzed by principal component analysis. Clear segregations of different intact and injured strains of Listeria were observed, suggesting that FT-IR can detect biochemical differences between intact and injured bacterial cells. This technique may provide a tool for the rapid assessment of cell viability and thereby the control of foodborne pathogens.  相似文献   

17.
Extracted fractions from black and red common beans (Phaseolus vulgaris) were studied using Fourier transform infrared spectroscopy (FT-IR). Beans were stored under three conditions: control at 4 degrees C; hard-to-cook (HTC) at 29 degrees C, 65% RH for 3.5 months; and refrigerated at 2 degrees C, 79% RH for 3.5 months after a HTC period (called HTC-refrigerated). Two fractions isolated from the beans, the soluble pectin fraction (SPF) and the water insoluble residue of the cell wall (WIRCW), were analyzed using diffuse reflectance (DRIFTS) FT-IR. The soaking water and cooking water from the beans were also studied using attenuated total reflectance (ATR) FT-IR. The DRIFTS FT-IR results from the SPF and WIRCW fractions were consistent with previously published data for Carioca beans showing that in general, more phenolic compounds were associated with the SPF of HTC beans than in the control beans. Results also showed that HTC-refrigerated beans had higher concentrations of phenolic compounds than control beans in the SPF. The ATR FT-IR results for soaking and cooking waters from the HTC-refrigerated and HTC beans had higher concentrations of absorbing compounds than the control beans, indicating that they lost more constituents to the water. Additionally, results indicate that the mechanism(s) for reversibility of the HTC defect could be different than the one(s) involved in the development of the defect.  相似文献   

18.
Fourier transform infrared spectroscopy (FT-IR) methods and common chemometric techniques [including discriminant analysis (DA), Mahalanobis distances, and Cooman plots] were used to classify various types of dietary supplement oils (DSO) and less expensive, common food oils. Rapid FT-IR methods were then developed to detect adulteration of DSO with select common food oils. Spectra of 14 types of DSO and 5 types of common food oils were collected with an FT-IR equipped with a ZnSe attenuated total reflectance cell and a mercury cadmium telluride A detector. Classification of DSO and some common food oils was achieved successfully using FT-IR and chemometrics. Select DSO were adulterated (2-20% v/v) with the common food oils that had the closest Mahalanobis distance to them in a Cooman plot based on the DA analysis, and data were also analyzed using a partial least-squares (PLS) method. The detection limit for the adulteration of DSO was 2% v/v. Standard curves to determine the adulterant concentration in DSO were also obtained using PLS with correlation coefficients of >0.9. The approach of using FT-IR in combination with chemometric analyses was successful in classifying oils and detecting adulteration of DSO.  相似文献   

19.
20.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号