首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different drying methods were applied to fresh Canadian-grown Echinacea purpurea flowers to determine optimal drying procedures for preserving caffeic acid derivatives. Fresh flowers of E. purpurea were dried by freeze-drying (FD), vacuum microwave drying with full vacuum (VMD), and air-drying (AD) at 25, 40, and 70 degrees C. Using HPLC, chicoric acid and caftaric acid levels were quantitated in dried flowers. These acids were significantly affected by the drying method conditions used. Although significant (p < 0.05) loss of chicoric acid was observed when flowers were stored at high moisture, VMD flowers with a low moisture content retained the highest levels of chicoric acid and caftaric acid similar to FD flowers. Flowers that were AD at 25 degrees C retained about 50%, while those dried by AD at 70 degrees C resulted in the lowest retention of these acids. Although flowers dried by AD at 40 degrees C retained relatively high amounts of chicoric acid and caftaric acid, the time (55 h) required to reach optimal drying was considerably longer than that (47 min) for VMD.  相似文献   

2.
The mechanical and physical properties of glycerol-plasticized wheat gluten films dried at different temperatures (20, 50, and 80 degrees C) and relative humidities (35 and 70% RH) were investigated. Dispersion of wheat gluten was prepared at pH 11 in aqueous solution. Films were obtained by casting the wheat gluten suspension, followed by solvent evaporation in a temperature and relative humidity controlled chamber. Decreasing relative humidity altered most of the mechanical properties. At 35% RH, tensile strength increased when drying temperature increased. However, at 70% RH, tensile strength decreased when temperature increased. Thickness of the films decreased by increasing temperature. Hypothetical coating strength increased with increasing drying temperature at 35% RH. However, at 70% RH, a maximum value was observed at 50 degrees C. Films produced at 80 degrees C exhibited low solubility in aqueous solution. Addition of 1.5% (w/v) sodium dodecyl sulfate increased solubility of all of the films except the film dried at 50 degrees C and 70% RH. Overall, drying temperature and relative humidity affected mechanical and physical properties of the wheat gluten films. However, the effect of drying temperature was more pronounced than the effect of relative humidity.  相似文献   

3.
In the period from 2000 to 2002, studies on peppermint (Mentha x piperita) herb and essential oil (EO) production have been conducted at Planteforsk, Apelsvoll Research Centre Div. Kise in Norway. The trials were aimed at finding the optimal harvest date and suitable drying methods to maximize EO yield and to obtain a desirable oil quality. Peppermint plants from the first production year (2000 and 2001) and the second production year (2002) were harvested during flowering at three developmental stages (early, full, and late bloom). Biomass and leaf production were recorded, and the water content of the plant material was detected after the application of different drying methods: instantaneous drying at 30, 50, and 70 degrees C and prewilting (ground drying) for 1 or 5 days followed by final drying at 30 degrees C. Finally, plant samples were transferred to The Plant Biocentre at NTNU, Trondheim, Norway, for hydrodistillation and gas chromatography-mass spectrometry (GC-MS) analyses of the EOs. Peppermint oil yield increased from early to full bloom and late bloom (average of all years and drying methods except for 50 and 70 degrees C: 2.95, 4.13 and 4.20 L/daa, respectively) as an effect of biomass production and leaf growth. The flavor-impact compounds, menthol and menthone, reached their optimum at full bloom (43-54 and 12-30%, respectively). Prewilting led to slight decreased EO levels after 1 day (7.7%) and 5 days of ground drying (1.5%) and no EO quality changes, compared to direct drying at 30 degrees C. The plant weight (H2O content) was drastically decreased to the average under 80 and 45% in all years, thus reducing the energy supply and costs for the necessary final drying step.  相似文献   

4.
Interesterification of a 60:40 (wt/wt) mixture of olive oil and fully hydrogenated canola oil was carried out in a batch reactor using a commercial immobilized lipase from Thermomyces lanuginose as a biocatalyst. The effects of a stepwise change of temperature on the degree of conversion, the solid fat content (SFC) of the products, and the residual activity of the enzyme were investigated. As a reference condition, an interesterification trial was conducted at a constant temperature of 70 degrees C for 48 h. For trials in which a temperature of 70 degrees C was used for the first 4 h of reaction and a temperature of 60 degrees C was employed for the following 44 h, there were no significant differences (p < 0.05) in the overall degree of conversion relative to the reference condition. Oils interesterified for only 1 or 2 h at 70 degrees C had melting points higher than 60 degrees C, whereas an oil produced by interesterification at 70 degrees C for only 4 h had a melting point of 58 degrees C. There was little difference (p < 0.05) between the SFC profiles of the interesterification products prepared by two different temperature protocols (70 degrees C for 24 h; 70 degrees C for 4 h followed by 60 degrees C for 20 h). Use of the protocol involving a step decrease in temperature significantly decreased catalyst deactivation effects, thereby increasing the residual activity of the immobilized lipase.  相似文献   

5.
The impact of two- and three-phase processing systems and malaxation conditions on phenol content (both total and individual phenols) and antioxidant capacity of laboratory-generated olive mill waste (OMW) was assessed. Two-phase olive processing generated a waste with higher phenol content and antioxidant capacity. Using the two-phase system, both malaxation time and temperature affected the phenol content and antioxidant capacity. The effects of different prestorage drying treatments on phenol content and antioxidant capacity were also compared. Air drying and drying at 60 degrees C resulted in a substantial decrease in the phenol content and antioxidant capacity. Drying at 105 degrees C and freeze-drying produced less degradation. The phenol content and antioxidant capacity of OMW stored at 4 degrees C and of OMW preserved by 40% w/w ethanol and 1% w/w acetic acid and stored at 4 degrees C were monitored for 30 days and compared with those of OMW stored at room temperature. None of these storage conditions could prevent the rapid decrease in phenolic concentrations and antioxidant capacity, which happened within the first 24 h.  相似文献   

6.
Prunes, which are industrially obtained by dehydrating fresh plums at 85-90 degrees C for 18 h, contain higher levels of phenolic compounds than most other fruits. Prune phenolics have shown beneficial effects on human health. Reports are available in the literature on ascorbic acid, phenol composition, and antioxidant activity of fresh plums and prunes, but there is a lack of publications on the influence of drying parameters on the phenolic compounds and antioxidant activity. A study was carried out on two plum cultivars using two sets of air-drying temperatures: (i) air temperature at 85 degrees C until 50% of prune moisture level and then the temperature was lowered to 70 degrees C; (ii) air temperature at 60 degrees C. Whole fresh and dried fruits were assessed for phenolics (catechins, hydroxycinnamic acids, anthocyanins, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that chlorogenic and neochlorogenic acid changes were affected by both process parameters and cultivar. Drying destroyed anthocyanins, and there was a significant decrease in flavonols. Ascorbic acid was drastically reduced in relation to process temperature. The most striking result was that drying at 85 degrees C doubled antioxidant activity in both cultivars, while contradictory results were found for 60 degrees C processed plums.  相似文献   

7.
Echinacea has been known for its immunostimulatory activity, and its alkylamide components have been linked to such biological activity. Consequently, alkylamides in Echinacea angustifolia were extracted using supercritical carbon dioxide from fresh and dried roots at 45-60 degrees C and 34-55 MPa, and the alkylamide yield in the extracts was determined. The yield of alkylamides from fresh roots increased with temperature yet decreased with pressure, whereas the yield from air-dried roots (moisture content 8.4%) increased with both temperature and pressure. Freeze-drying of the roots to a moisture content of 4.9% did not result in any further increase in the yield compared to that of air-dried roots. Alkylamide yield of the ground dried roots extract was the highest (p < or = 0.05) among those from fresh, ground and unground E. angustifolia roots. Supercritical fluid extraction therefore shows potential for the recovery of alkylamides from dried Echinacea roots.  相似文献   

8.
The drying of Pedro Ximenez grapes in chamber at a controlled temperature of 40 or 50 degrees C is studied. Compared to traditional sun-drying, the chamber-drying shortened the drying time by about 40% at 50 degrees C. In color terms, the musts obtained from grapes dried at 50 degrees C were closer in CIELab coordinates to those obtained by sun-dried grapes, with similar h(ab) values and slightly lower L* and C(ab)*. To shorten further the drying times at 50 degrees C, the grapes were dipped in olive oil or ethyl oleate emulsions containing potassium carbonate. The ethyl oleate pretreatment shortened additionally the drying time by about 25%, providing musts with chroma, lightness, and hue similar to those without grape pretreatment. In general, except for the phenolic compounds corresponding to the drying with ethyl oleate pretreatment, most of these compounds in the remainding conditions studied increased to a lesser extent than expected because of water losses of the grapes during drying, revealing degradation reactions.  相似文献   

9.
刘雪  曾祥媛  张园  罗蓉  高若曦  赵武奇 《核农学报》2020,34(11):2470-2476
为了提高猕猴桃片的干燥品质,缩短干燥时间及降低能耗,本试验以猕猴桃为原料,采用气体射流冲击干燥技术对猕猴桃片进行干燥,研究恒温和变温对猕猴桃片干燥特性及品质指标的影响。结果表明,猕猴桃片恒温及变温气体射流冲击干燥均属于降速干燥;风温对猕猴桃片的气体射流冲击干燥特性有影响;变温干燥条件下含糖量与恒温40℃时无显著差异,可滴定酸含量与恒温70℃时无显著差异;70→40℃变温干燥的猕猴桃片回复性和维生素(Vc)保存率最高,色差(ΔE)值介于50℃恒温干燥和70℃恒温干燥组之间;70→40℃变温干燥方式的单位能耗显著低于40→70℃变温干燥组。70→40℃变温干燥方式加工的猕猴桃片综合品质最佳,本研究为变温气体射流冲击干燥技术应用于猕猴桃片的干燥提供了技术支持。  相似文献   

10.
A phenological study was conducted to determine the impact of harvest maturity on the immune-modulating properties of Echinacea purpurea. The aerial parts of this plant were collected during seven stages of development and were assayed for a common botanical marker for this species, cichoric acid. Plants of selected development stages were also assayed for total polysaccharides and compared for their immune-modulating effects on the THP-1 monocyte/macrophage cell line by means of a gene expression study. Although the concentration of cichoric acid did not change significantly during the course of the study, stage 1 (advanced vegetative) had the highest concentration of total polysaccharides and exhibited the most potent induction activity on immune-modulating cytokines such as interferon-gamma and tumor necrosis factor-alpha. These findings suggest that the use of gene expression may be an effective tool not only to standardize botanical extracts but also to optimize harvest time.  相似文献   

11.
The water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI) and WPI-lipid emulsion films dried at different conditions were investigated. As drying temperature increased, WVPs decreased significantly. Significantly lower WVP was observed for emulsion films compared to WPI films. WPI-Beeswax (BW) and WPI-anhydrous milkfat fraction emulsion films dried at 80 degrees C and 40% RH gave the lowest WVP compared to 25 degrees C, 40% RH and 40 degrees C, 40% RH. A large drop in WVP of WPI-BW emulsion films was observed at 20% BW content. The decrease in WVP for emulsion films as drying temperature increased could be due to change in the lipid crystalline morphology and/or lipid distribution within the matrix. Mechanical properties of WPI and WPI-lipid emulsion films, on the other hand, were not modified by drying conditions.  相似文献   

12.
The changes of the antioxidant (AOA) and antiradical activities (ARA) and the total contents of phenolics, anthocyanins, flavonols, and hydroxybenzoic acid in roots and different aerial sections of Echinacea purpurea, nettle, and dandelion, after treatment with ornithine decarboxylase inhibitor, a polyamine inhibitor (O-phosphoethanolamine, KF), and a phenol biosynthesis stimulator (carboxymethyl chitin glucan, CCHG) were analyzed spectrophotometrically; hydroxycinnamic acids content was analyzed by RP-HPLC with UV detection. Both regulators increased the AOA measured as inhibition of peroxidation (IP) in all herb sections, with the exception of Echinacea stems after treatment with KF. In root tissues IP was dramatically elevated mainly after CCHG application: 8.5-fold in Echinacea, 4.14-fold in nettle, and 2.08-fold in dandelion. ARA decrease of Echinacea leaves treated with regulators was in direct relation only with cichoric acid and caftaric acid contents. Both regulators uphold the formation of cinnamic acid conjugates, the most expressive being that of cichoric acid after treatment with CCHG in Echinacea roots from 2.71 to 20.92 mg g(-1). There was a strong relationship between increase of the total phenolics in all sections of Echinacea, as well as in the studied sections of dandelion, and the anthocyanin content.  相似文献   

13.
Microwave heating was used to produce aqueous-soluble components from green, oolong, and black tea residues. Heating at 200-230 degrees C for 2 min extracted 40-50% of polysaccharides and 60-70% of the polyphenols. Solubilization of arabinose and galactose by autohydrolysis occurred with heating above 170 degrees C, whereas heating above 200 degrees C was necessary to solubilize xylose. Catechins were soluble in water by heating at low temperature (110 degrees C); however, new polyphenols having strong antioxidant activity were produced above 200 degrees C. The amount of solubilized materials and antioxidant activity increased with increased fermentation of harvested tea leaves (green tea < oolong tea < black tea). Cutin, a plant biopolyester, remained in the residue after heating as did cellulose and lignin/tannin. The predominant cutin monomer that was recovered was 9,10-epoxy-18-hydroxyoctadecanoic acid, followed by dihydroxyhexadecanoic acid and 9,10,18-trihydroxyoctadecanoic acid.  相似文献   

14.
不同干燥方式对中国对虾风味组分的影响   总被引:3,自引:3,他引:0  
为了研究不同干燥方式对中国对虾风味组分的影响,该文采用热风(温度:(50±2)℃,风速:1.5 m/s,时间:8 h)、冷风(温度:18~20℃,风速:1.5 m/s,时间:56 h)、微波真空(功率500 W,真空度70 kPa,时间:40 min)、微波真空-冷风联合(先温度为18~20℃,时间27h的冷风干燥,后功率500 W,真空度70 kPa,时间10 min的微波真空干燥)4种干燥方式对其干制品的游离氨基酸组成、呈味核苷酸、等鲜量以及挥发性成分进行研究。结果表明,热风干燥后的中国对虾总游离氨基酸质量分数为63.31 mg/g,相对于对照组鲜虾(72.04 mg/g)有明显损失(P0.05);呈味核苷酸质量分数为7.9 mg/g,较对照组(9.05 mg/g)损失严重(P0.05);其等鲜量(127 g/(100 g))较鲜虾(180 g/(100 g))显著降低(P0.05);对虾产生以烤肉香味和海鲜风味为主的挥发性成分。冷风干燥使中国对虾总游离氨基酸质量分数较对照组损失偏大,其值为63.70 mg/g(P0.05);等鲜量(155(g/100 g))损失较大(P0.05);挥发性成分以烃类化合物为主,风味较寡淡。微波真空干燥后的中国对虾呈味核苷酸和等鲜量分别为9.17 mg/g和176 g/(100 g),总游离氨基酸质量分数较对照组损失较严重,为55.81 mg/g(P0.05);挥发性成分以肉香味和烤香味为主。微波真空-冷风联合干燥后的中国对虾呈味核苷酸含量最高,其值是9.90 mg/g;等鲜量值为189 g/(100 g),相对于鲜虾有所提高(P0.05);总游离氨基酸质量分数为62.84 mg/g呈现降低(P0.05);产生以烤肉香味和海鲜风味为主的挥发性成分。因此,微波真空-冷风联合干燥方式对中国对虾风味变化影响最小,是一种具有发展前景的干燥方式。  相似文献   

15.
The kinetics of ascorbic acid (AA) loss during storage of packed table olives with two different levels of added AA was investigated. Three selected storage temperatures were assayed: 10 degrees C, ambient (20-24 degrees C), and 40 degrees C. The study was carried out in both pasteurized and unpasteurized product. The effect of pasteurization treatment alone on added AA was not significant. In the pasteurized product, in general AA degraded following a first-order kinetics. The activation energy calculated by using the Arrhenius model averaged 9 kcal/mol. For each storage temperature, the increase in initial AA concentration significantly decreased the AA degradation rate. In the unpasteurized product, AA was not detected after 20 days in samples stored at room temperature and AA degradation followed zero-order kinetics at 10 degrees C, whereas at 40 degrees C a second-order reaction showed the best fit. In both pasteurized and unpasteurized product, the low level of initial dehydroascorbic acid disappeared during storage. Furfural appeared to be formed during storage, mainly at 40 degrees C, following zero-order kinetics.  相似文献   

16.
The total phenolic and flavonoid content of the aerial parts of five aromatic plants harvested at different periods was estimated, and their antioxidant capacity was evaluated. Major phenolic compounds present in their extracts were determined by RP-HPLC. The results demonstrated different amounts of total phenolic compounds and various degrees of antioxidant activity depending on the plant species, the time of harvest, and the drying method employed. Extracts from air-dried Mentha viridis L., Origanum majorana L., and Rosmarinus officinalis L. demonstrated the greatest efficacy during the flowering stage, in which the identified flavonoids were found in significantly higher amounts, whereas phenolic acids were found in their lowest concentration. Extracts from air-dried Laurus nobilis L. and Foeniculum vulgare Mill were less efficient in terms of antioxidant activity, with the highest values being observed during the early fruiting stage. This stage was characterized by the lowest flavonoid content and high phenolic acid content, except for L. nobilis L. extracts. Overall, the amount of identified phenolic acids did not vary considerably within the investigated year. The total phenolic concentration in all plant extracts decreased significantly when freeze-dried rather than air-dried samples were used. The HPLC analysis further supported the above for most of the phenolic compounds present in the extracts, except for hydroxybenzoic acids, which were better retained during the freeze-drying process.  相似文献   

17.
Optimization of the solid-liquid extraction conditions for trans-resveratrol, trans--viniferin, ferulic acid, and total phenolics from milled grape canes has been investigated. The temperature and ethanol concentration were found to be major process variables for all responses, whereas the solvent to solid ratio was found not to be significant for any of the responses studied. The yields of trans-resveratrol, trans--viniferin, and total phenolics increased with increasing temperature. Maximum yields of trans-resveratrol (4.25 mg/g dw), trans--viniferin (2.03 mg/g), and total phenolics (9.28 mg/g dw) were predicted from the combination of a moderate ethanol concentration (50-70%) and the highest temperature (83.6 degrees C), whereas an ethanol concentration of 35% at the lowest temperature studied (16.4 degrees C) was optimal for the extraction of ferulic acid (1.05 mg/g dw). Effective diffusivity values of resveratrol in the solid phase, D eff for different extraction conditions, were calculated by fitting the experimental results to a model derived from the Fick's second law. Effective diffusivity of resveratrol in the solid phase varied from 3.1 x 10 (-13) to 26.6 x 10 (-13) m (2) s (-1) with changing extraction conditions. The increase in effective diffusivity of resveratrol was observed with increasing temperature, and the highest predicted level was obtained when using 54% ethanol/water mixture at 83.6 degrees C. The increase in ethanol concentration exhibited the favorable effect up to 50-55%, thereafter effective diffusivity decreased with a further increase in concentration.  相似文献   

18.
Commercially supplied chicken breast muscle was subjected to simultaneous heat and pressure treatments. Treatment conditions ranged from ambient temperature to 70 degrees C and from 0.1 to 800 MPa, respectively, in various combinations. Texture profile analysis (TPA) of the treated samples was performed to determine changes in muscle hardness. At treatment temperatures up to and including 50 degrees C, heat and pressure acted synergistically to increase muscle hardness. However, at 60 and 70 degrees C, hardness decreased following treatments in excess of 200 MPa. TPA was performed on extracted myofibrillar protein gels that after treatment under similar conditions revealed similar effects of heat and pressure. Differential scanning calorimetry analysis of whole muscle samples revealed that at ambient pressure the unfolding of myosin was completed at 60 degrees C, unlike actin, which completely denatured only above 70 degrees C. With simultaneous pressure treatment at >200 MPa, myosin and actin unfolded at 20 degrees C. Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40 degrees C. Electrophoretic analysis indicated high pressure/temperature regimens induced disulfide bonding between myosin chains.  相似文献   

19.
苦杏仁去皮热风干燥适宜温度提高油脂品质   总被引:4,自引:1,他引:3  
为探索适宜的杏仁热风干燥温度,以热烫去皮处理后的湿杏仁为试验材料,研究了热风干燥不同温度对杏仁及其油脂的感官、理化和营养品质的影响。结果表明,经热烫去皮、干燥处理后可以得到颜色较浅的杏仁油,有利于提高杏仁油的感官品质,但会造成杏仁油过氧化值显著升高(P0.05),油酸、亚油酸、十七碳烯酸、二十碳一烯酸等不饱和脂肪酸的比例和甾醇含量降低,棕榈酸、棕榈油酸、硬脂酸、十七碳烷酸、二十碳烷酸、二十碳一烯酸的比例和总生育酚含量升高,对杏仁油的理化特性和营养品质产生影响。但不同脂肪酸及其伴随物种类、不同温度处理变化幅度不同。随着干燥温度的提高,干燥速率逐渐加快,杏仁及杏仁油的颜色逐渐加深,杏仁油亮度下降,酸价略有升高,但不同干燥温度之间差异不显著(P0.05);过氧化值呈上升趋势,且80℃以上干燥处理显著高于40℃和60℃干燥处理(P0.05);总不饱和脂肪酸、油酸、亚油酸、十七碳烯酸、二十碳烷酸的比例及β-生育酚、δ-生育酚及总生育酚含量总体呈下降趋势,棕榈油酸、棕榈酸、硬脂酸的比例和β-谷甾醇、总甾醇含量总体呈升高趋势。低温干燥有利于提高杏仁油中生育酚含量,而提高干燥温度则有利于杏仁油中植物甾醇含量的提高。尤其是干燥温度为80℃以上时,杏仁油的品质变化加快。因此,为提高杏仁油理化与营养品质,杏仁脱皮后的干燥宜在80℃以下的较低温度条件下进行。研究结果可为杏仁干燥和高品质杏仁油加工提供参考。  相似文献   

20.
The effect of hydration level on processing properties and the effects of hydration level, concentration of buckwheat bran flour and drying temperature on the physical and cooking quality of spaghetti were determined. Specific mechanical energy transferred to the dough during extrusion decreased 69% for semolina and 79% for semolina containing 30%, w/w, buckwheat bran flour, as hydration level increased 29–32% absorption. Little or no postdrier checking occurred in spaghetti made from semolina or spaghetti containing buckwheat bran flour when dried at high (70°C) or ultrahigh temperature (90°C). When dried at low temperature (40°C), tolerance to postdrier checking of spaghetti decreased as buckwheat bran flour increased 0–30% (w/w). Hydration level before extrusion did not affect cooking loss of spaghetti made from semolina. However, cooking loss was greater from spaghetti made with semolinabuckwheat bran flour that was hydrated to 32% compared with 29–31% absorption. Cooked firmness of spaghetti containing buckwheat bran flour decreased from 0.588–0.471 Nm as hydration increased from 29–32% absorption. Cooking loss was lower and cooked firmness was greater when spaghetti containing buckwheat bran flour was dried at ultrahigh than at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号