首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 609 毫秒
1.
[目的]研究滦河上游典型林分的枯落物层与土壤层的水文效应,为森林健康监测和评价提供依据。[方法]对滦河上游3种林分的枯落物层未分解层与半分解层进行调查研究。[结果](1)油松林的枯落物生物量为12.03t/hm2,最大持水量为19.4t/hm2,有效拦蓄量为23.52t/hm2;落叶松林的枯落物生物量为9.51t/hm2,最大持水量为11.9t/hm2,有效拦蓄量为17.03t/hm2;落叶松白桦混交林的枯落物生物量为5.54t/hm2,最大持水量为13.0t/hm2,有效拦蓄量为13.7t/hm2。(2)半分解层枯落物浸泡8h已基本达到饱和,而未分解层需浸泡10h。枯落物在浸水的前0.5h内吸水速率最大,6h左右时吸水速率明显减缓。(3)落叶松白桦混交林土壤层持水能力最强,为375.92t/hm2;油松林土壤层的持水能力最差,为248.04t/hm2。利用幂函数对入渗速率与入渗时间进行拟合,其相关系数R2均在0.98以上。[结论]油松林枯落物层的生物量、最大持水量、有效拦蓄量都最大,而落叶松白桦混交林枯落物的土壤持水能力最强。  相似文献   

2.
不同林分枯落物层的水文生态功能   总被引:69,自引:13,他引:69  
分析了八达岭林场4种林分枯落物层的蓄积量、持水能力、阻滞径流速度和减流减沙的效应。结果表明:①油松的总蓄积量为29 20t/hm2,最大持水量为61 36t/hm2,有效拦蓄量为19 38t/hm2;侧柏总蓄积量为4 62t/hm2,最大持水量为57 84t/hm2,有效拦蓄量为16 58t/hm2;元宝枫总蓄积量为17 76t/hm2,最大持水量为30 92t/hm2,有效拦蓄量为71 73t/hm2;刺槐总蓄积量为10 26t/hm2,最大持水量为43 12t/hm2,有效拦蓄量为24 63t/hm2;在这4种林分枯落物中,元宝枫的有效拦蓄量为最大,相当于7 17mm的降雨。②4种枯落物未分解层和半分解层持水量与浸水时间的关系为:W=Aln(t) B,未分解层持水量均大于半分解层持水量,吸水速度同浸水时间的关系式为V=ktn,在0~2h之间,枯落物未分解层和半分解层吸水速率较快,在4~6h后下降速率逐渐减缓。③随坡度增加,枯落物阻滞径流速率、减沙减流的效果更加明显,元宝枫在此效应中表现最佳。  相似文献   

3.
北京十三陵不同林分枯落物层和土壤层水文效应研究   总被引:15,自引:3,他引:12  
对北京十三陵林场4种林分枯落物层及土壤层进行了初步研究.结果表明:①侧柏林枯落物的总蓄积量为3.67 t/hm2,最大持水量为8.54 t/hm2.有效拦蓄量为9.83 t/hm2;油松林枯落物的总蓄积量为12.44 t/hm2,最大持水量为20.45 t/hm2.有效拦蓄量为26.75 t/hm2;黄栌林枯落物的总蓄积量为12.29 t/hm2,最大持水量为21.81 t/hm2,有效拦蓄量为26.67 t/hm2;黄栌、油松混交林枯落物的总蓄积量为13.27 t/hm2,最大持水量为21.10 t/hm2,有效拦蓄量为27.29 t/hm2;②未分解层枯落物10 h基本达到饱和.半分解层在8 h已经达到饱和,持水量与浸泡时间的关系为Q=aln(t)+6;枯落物在浸水的0.5 h内吸水速率最大,4 h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn.③油松林土壤层持水能力最强,为206.9 t/hm22,黄栌、油松林土壤层的持水能力最差,为130.2 t/hm2,并利用幂函数对入渗速率和入渗时间进行拟合.  相似文献   

4.
小兴安岭不同森林类型枯落物储量及其持水特性比较   总被引:2,自引:3,他引:2  
[目的]对小兴安岭主要森林类型林下枯落物蓄积量进行调查分析和持水特性研究,为该区森林生态服务功能评价提供重要依据和理论基础。[方法]选择6种典型森林类型设置样地测定枯落物现储量,并采用浸水法对枯落物持水特性进行测定,计算其最大拦蓄量和有效拦蓄量。[结果]主要森林类型枯落物蓄积量介于13.53~29.48t/hm2,大多是半分解层蓄积量高于未分解层。不同森林类型最大持水率与最大持水量表现不一致,其中最大持水率为243.19%~524.0%,最大持水量为56.81~106.90t/hm2。不同森林类型的最大拦蓄量与有效拦蓄量的表现也略有差异,最大拦蓄量为33.43~64.42t/hm2,有效拦蓄量为24.91~48.38t/hm2。枯落物层的持水率与浸泡时间呈显著对数关系,而吸水速率与浸泡时间呈显著幂函数关系。[结论]受树种特性、枯落物储量、分解速率及林龄的影响,该区不同森林类型林下枯落物储量及其持水特性差异显著。  相似文献   

5.
北京百花山森林枯落物层和土壤层水文效应研究   总被引:29,自引:7,他引:22  
对百花山4种林分枯落物层和土壤层的水文效应进行了初步研究。结果表明:1核桃楸林枯落物的总蓄积量为9.99 t/hm2,最大持水量为27.72 t/hm2,有效拦蓄量为29.55 t/hm2;华北落叶松林枯落物的总蓄积量为10.27 t/hm2,最大持水量为12.84 t/hm2,有效拦蓄量为13.53 t/hm2;黑桦林枯落物的总蓄积量为7.04 t/hm2,最大持水量为19.01 t/hm2,有效拦蓄量为19.18 t/hm2;辽东栎林枯落物的总蓄积量为8.22 t/hm2,最大持水量为14.72 t/hm2,有效拦蓄量为18.33 t/hm2。2半分解层枯落物浸泡8 h已基本达到饱和,而未分解层10 h基本达到饱和,持水量与浸泡时间的关系为Q=aln(t) b;枯落物在浸水的前半小时内吸水速率最大,4 h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn。3辽东栎林土壤层持水能力最强,为266.22 t/hm2,黑桦林土壤的持水能力最差,为219.39 t/hm2,利用幂函数对入渗速率与入渗时间进行拟合,其相关系数均在0.98以上。  相似文献   

6.
华北土石山区典型森林枯落物层和土壤层水文效应   总被引:15,自引:5,他引:10  
以河北省围场县北沟林场内4种不同林分的枯落物层和土壤层为研究对象,对其水文效应进行初步研究.结果衰明:(1)落叶松、油松混交林枯落物蓄积量最大,为12.28 t/hm2,最大持水量为24.60 t/hm,2,有效拦蓄量为27.19 t/hm2;油松林的枯落物蓄积量为11.74 t/hm2,最大持水量为19.30 t/hm2,有效拦蓄量为22.21 t/hm2;落叶松林的枯落物蓄积量为9.32 t/hm2,最大持水量为11.60 t/hm2,有效拦蓄量为16.20 t/hm2;落叶松白桦混交林的枯落物蓄积量为5.58 t/hm2,最大持水量为12.90 t/hm,2,有效拦蓄量为13.53 t/hm2.(2)半分解层枯落物浸泡8 h已基本达到饱和,而未分解层需浸泡10 h,通过分析得出持水量与浸泡时间的关系为Q=aln(t)+b;枯落物在浸水的前30 min内吸水速率最大,6 h左右时吸水速率明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn.(3)落叶松白桦混交林土壤层持水能力最强,为377.03 t/hm2;落叶松油松混交林土壤层的持水能力最差,为241.9 t/hm,2,利用幂函数对入渗速率与入渗时间进行拟合,其相关系数均在0.95以上.  相似文献   

7.
以桃林口水库水源涵养区不同生态修复措施下枯落物为研究对象,通过野外调查与室内测试相结合、"空间代替时间"的方法,研究了不同措施及措施实施前后枯落物的蓄积量、吸水速率、持水量和有效拦蓄量等蓄水保水效益。结果表明:生态修复措施的实施增加了林内枯落物的蓄积量,枯落物蓄积量天然(次生)林封育型(26.88t/hm2)>疏林补植型(25.83t/hm2)>人工林封育型(25.11t/hm2)>荒坡造林型(24.10t/hm2)>陡坡梯田退耕型(12.22t/hm2)>荒坡封育型(9.57t/hm2),且生态措施实施前后的差异显著;枯落物持水量与浸泡时间之间存在对数关系,枯落物吸水速率与浸泡时间间存在乘幂函数关系;不同修复措施间枯落物的拦蓄量差异显著,天然(次生)林封育型枯落物有效拦蓄深最大(8.51mm),荒坡封育型的有效拦蓄深最小(2.85mm),其他依次为荒坡造林型(5.22mm)、疏林补植型(5.13mm)、人工林封育型(4.51mm)、陡坡梯田封育型(3.92mm),生态修复措施的实施增加了枯落物拦蓄量,增幅为20.41%~98.63%。研究结果为评价水库水源涵养区不同生态修复措施蓄水保水效益提供了基础。  相似文献   

8.
以大兴安岭重度火烧迹地不同恢复年限落叶松(Larix gmelinii)人工林为研究对象,对植被恢复过程中枯落物蓄积量及其持水特性进行比较研究。结果表明:(1)重度火烧迹地经过植被恢复枯落物厚度和蓄积量增加,恢复24a枯落物厚度和蓄积量均最高,分别为3.42cm和6.04t/hm2。(2)植被恢复过程中枯落物层最大持水率为357.22%~576.41%,最大持水量为13.27~30.23t/hm2,有效拦蓄深为0.53~1.45mm。枯落物半分解与分解层最大持水量和有效拦蓄深均高于未分解层。在植被恢复过程中,枯落物最大持水量和有效拦蓄深均表现出逐渐增大的趋势。(3)枯落物浸水4h时,持水量均超过其最大值的80%,浸水14h后吸水基本达到饱和。枯落物持水量(W)和吸水速率(V)与浸水时间(t)可用W=kln t+p和V=ktn方程拟合,拟合结果极显著。  相似文献   

9.
塔里木河上游不同森林类型枯落物的持水特性   总被引:6,自引:4,他引:2  
对塔里木河上游4种森林类型(灰胡杨杜梨混交林、灰胡杨林、胡杨林、柽柳灌木林)林下枯落物蓄积量调查分析和持水特性进行研究。结果表明:(1)不同森林类型林下枯落物半分解层蓄积量、最大持水量、最大拦蓄量、有效拦蓄量与有效拦蓄深均大于未分解层。(2)枯落物总蓄积量、最大持水量、最大拦蓄量、有效拦蓄量与有效拦蓄深大小顺序为灰胡杨林柽柳林胡杨林混交林,灰胡杨林各指标分别为5.45t/hm2,7.83t/hm2,10.63t/hm2,8.73t/hm2,0.87mm,其持水蓄水能力最强。(3)不同森林类型林下枯落物持水量、吸水速率与浸水时间的动态变化规律基本相似。枯落物持水量随浸泡时间延长而增长,在水中浸泡16h时,其持水量基本达到最大值;未分解层和半分解层吸水速率在0.5h最快,随时间延长吸水速率逐渐减缓,10h后明显减缓,未分解层和半分解层吸水速率基本趋向一致。在枯落物持水作用较强的前2h内,吸水速率最快的为柽柳林,其次为灰胡杨林。(4)未分解层和半分解层持水率同浸泡时间呈显著对数关系(Y=aln t+b),吸水速率与浸泡时间呈显著幂函数关系(V=ktn)。综上所述,塔里木荒漠区灰胡杨林表现出较好的水土保持与涵养水源能力,建议在今后森林经营中选择灰胡杨为造林树种,并采取适当的森林健康调节措施,以充分发挥森林的水源涵养功能。  相似文献   

10.
冀北山地油松和落叶松林下枯落物的水文效应   总被引:3,自引:5,他引:3  
对河北省木兰围场国有林场内油松、落叶松人工林枯落物水文效应进行了调查。结果显示,油松、落叶松枯落物厚度分别为6.1和4.0cm,枯落物蓄积量为33.93和43.16t/hm2;浸泡24h后测定油松枯落物的含水量为268.10g,落叶松枯落物含水量为157.54g,二者的有效拦蓄量分别为30.07和57.56t/hm2。油松、落叶松林下枯落物持水量、吸水速率与浸水时间的变化规律基本一致,枯落物持水量与浸水时间存在对数曲线关系,而吸水速率与浸泡时间存在幂函数关系;枯落物浸水0~4h内吸水速率最大,4~8h内逐渐变缓,10h后其持水量基本达到最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号