首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three lipid fractions, namely the freely extractable fraction and those associated with humin and humic acid fractions, were obtained from the loamy soil of a carefully maintained long-term experiment located on Deffend ORE field, Poitiers, France. The analyses showed differences in molecular distribution, suggesting different sources and diagenetic states of the source material. Despite a major input of plant material to the soil organic matter, intensive bacterial activity was suspected. Most distributions suggested an increase in the microbial/terrestrial lipid ratio from the free to humin to humic fractions. Molecular evidence of fungal activity, especially in the top layer, was also found in the distributions of n -alkanes and n -alkanoic acids. In the surface horizon A1 alkanes were the major compounds, followed by n -alkanoic acids and sterols. The degraded horizons, poorer in organic matter, i.e. the A2 and B horizons, were dominated by long-chain (>C20) n -alkanoic acids with a strong even-over-odd predominance and C24 and C26 n -alkanols. Sterols had been removed from these horizons through degradation. A comparison of humic acid and humin composition on the basis of Py(methylation)-GC-MS showed that the two fractions produce partly similar pyrolysis products. Most prominent were molecules from plant and microbial carbohydrates, lignin building blocks and linear aliphatic (carboxylic acids, esters) and nitrogen compounds. The investigation showed that while low-molecular-weight soil lipids were highly dominated by compounds derived from the overlying vegetation, pyrolysis data from the corresponding high-molecular-weight fractions reflected the incorporation of microbial biomarkers into the humic-type fractions.  相似文献   

2.
Liu  Wen Xin  Tao  Shu 《Water, air, and soil pollution》1998,105(3-4):667-675
Naturally occurring organic compounds in water from Jingmi Canal were sequentially fractionated into five fractions using filtration and adsorption columns of XAD-8 and XAD-4 resins in tandem: the fractions being particulates, hydrophobic compounds, humic substances, XAD-4 acids and other hydrophilic neutral solutes. Then each fractions was chlorinated simultaneously with sodium hypochlorite, and the dominant halogenated product determined in this experiment was chloroform. Brominated THMs were detected as well. Both TOC abundance and ratio of CHCl3 product to corresponding fraction of TOC showed that dissolved humic substances and particulate-adsorbed organics were the major precursors of chloroform. Low-molecular-weight hydrophilic XAD-4 acids also possessed noticeable halogenation activity. Other aquatic organic solutes, however, were relatively inert with respect to the three fractions mentioned above. These results suggested that in addition to humic substances, other potential precursors which have not been studied thoroughly before, such as XAD-4 acids, should be considered during water chloronation.  相似文献   

3.
Olive mill wastewaters (OMW) can be a severe problem when disposed of as untreated because of their high organic load, elevated concentration of polyphenols, and moderately low biodegradability. In the present study, the acute toxicity of 15 compounds with low molecular weight (<350 Da), catechol, four benzoic acids, three phenylacetic acids, three phenylethanols, and four cinnamic acids, already isolated from the reverse osmosis in the fractionation of OMW, was assessed on the marine bacterium Vibrio fischeri and on the seeds of two dicotyledonous species Cucumis sativus and Lepidium sativum, and on one monocotyledon Sorghum bicolor. Results of phytotoxicity showed that the most toxic compounds were catechol (EC50s ranging from 0.40 mmol/L for S. bicolor to 1.09 for C. sativus) and hydroxytyrosol, (EC50s ranging from 0.47 mmol/L for S. bicolor to 1.55 for C. sativus) while the toxic potential on bacteria was particularly elevated with EC50 values 1 or 2 orders less than phytotoxicity. These results suggested that the risk of OMW disposal may be more elevated for the water compartment than for the soil.  相似文献   

4.

Purpose  

Persistent organic compounds exhibit declining extractability and bioavailability to microorganisms and other soil organisms with increasing contact time or ageing. Among the possible mechanisms are the association of organic compounds with natural organic matter. Ageing can reduce the negative effects that an organic pollutant may have on the biological, biochemical properties and phytotoxicity of the contaminated soil. The aim of the present work was to evaluate, under laboratory conditions, the response of an agricultural soil contaminated with phenanthrene (Phe) and subjected to 2-year ageing and the effects and potential remediation capabilities of compost and an effective Phe-degrading bacterial culture.  相似文献   

5.
The mutagenic potential of the acid, base, and neutral fractions of petroleum sludge amended soil was determined using the Salmonella/microsome assay and Aspergillus methionine assay. Organic compounds were extracted from two different soils amended with either storm-water runoff impoundment or combined API-separator/slop-oil emulsion solids waste. Application of either waste to soil reduced the mutagenic activity of organic compounds extracted from equal weights of soil. However, biodegradation increased both the total and the direct-acting mutagenicity of all fractions residual in the waste-amended soil. The maximum level of mutagenic activity per milligram residual C was detected in the sample collected 360 days after waste application for the acid and base fractions from the storm-water runoff impoundment amended soils and the acid, base, and neutral fractions of the combined API separator/slop-oil emulsion waste amended soils. A comparison of the results based on equivalent weights of soil indicates that the mutagenic potential of both wastes was reduced by soil incorporation. The results from the Salmonella assay indicate that while the bulk of the solvent extractable organics in both wastes was rendered non-mutagenic, the mutagenic potential of the organic compounds in the acid fraction from the storm-water runoff impoundment sludge amended soil was increased. The results from the Aspergillus assay of both wastes indicate that the mutagenic potential of all three fractions was eventually reduced to a level that would be considered non-mutagenic. Thus, while degradation may have increased the mutagenic potential of specific organic compounds that were residual in the soil, the overall effect of degradation was to reduce the weighted activity of the waste amended soil.  相似文献   

6.
The objective of this study was to understand the degradation of the organic matter of olive mill wastewater (OMW) and its phytotoxic and water repellent effects in dependence on four different climatic conditions. We hypothesized that warm conditions with sufficient soil moisture ensure optimal biological activity and thus minimize negative effects of the OMW treatment. Therefore, OMW-treated soil was incubated for 60 days under four climatic conditions. During incubation, we monitored pH, contents of nitrate, manganese and phenolic compounds, soil respiration, soil water repellency, and δ13C. Additionally, calorific value and thermal stability of the soil organic matter at the beginning and end of incubation were determined. Soil samples of the wet-cold and moist-warm incubation were tested for phytotoxicity using a seed germination bioassay with Lepidium sativum. As a function of climatic conditions, positive and negative effects, e.g., addition of nutrients, phytotoxicity, and soil water repellency, were observed. Under dry-hot conditions, the soil was still water repellent after 60 days of incubation whereas the wet-hot, moist-warm, and wet-cold incubation show that soil would stay wettable if soil moisture before OMW treatment would be sufficient. Thus, the impact of OMW treatment on soil quality strongly depends on the environmental conditions which should favor an enhancement of microbial activity to minimize negative effects.  相似文献   

7.
Studies on bound (14)C-chlorsulfuron residues in soil   总被引:1,自引:0,他引:1  
The cause for phytotoxicity of bound residues of chlorsulfuron (2-chloro-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl]benzenesulfonamide) to rotational crops is unknown. This study was conducted to determine the formation of nonextractable (bound) residues of chlorsulfuron in soil, and the distribution of bound residues in different organic matter fractions. The results showed that over 150 days, the extractable fraction of (14)C-residues decreased to 25.1% of applied chlorsulfuron, while bound residues concurrently increased to 47.1%. The distribution of (14)C-bound residues in soil organic matter fractions followed an order of humic acid (HA) < humin < fulvic acid (FA). Although the most bound residues were detected in the FA fraction, the amount associated with the humin fraction increased with time. After soil treatment by autoclaving, it was found that bound (14)C-chlorsulfuron residues became available again in the soil. One of the released products was 2-amino-4-hydroxyl-6-methyl-1,3,5-triazine (identified by GC-MS), which is a degradation product of chlorsulfuron.  相似文献   

8.
Phytotoxicity tests using higher plants in general are infrequently used as a part of ecotoxicology. Many reports assess herbicide toxicity merely on the basis of faunal species tests. This is inadequate because the herbicide impact is much greater on flora than on fauna. Environmental pollution by herbicides was likely to have been quite wide-spread during the past years (1964–1984) when the use of herbicides grew five-fold. When herbicides reach non-target areas, they can cause unacceptable harm to non-target species, plants in particular. The toxicity of herbicides to algal species is not likely to be identical to that of higher plants, so that algal species may not serve as a surrogate species for the toxicity evaluation. Currently there are two promising phytotoxicity tests. Common duckweed is an aquatic species and sensitive to toxicity. Duckweek test can be used with static, renewal, or flow-through methods. The latter two are especially useful for unstable compounds or samples. Seed germination and root elongation tests are versatile and can be tested in water, wastewater, sediment, and slurry. Many recent activities in these areas suggest that phytotoxicity tests are a valuable part of ecotoxicology.  相似文献   

9.
Abstract

Changes in chemical and mineralogical characteristics associated with different particle size fractions in soil after 40 years of continuous production of corn by the conventional tillage method (CC) as compared with those of an adjacent native grassland site (NG) are investigated. Results indicate that corn cropping in a soil previously supporting native vegetation produces a decline in total and humified organic matter, phenolic compounds, enzymatic activities, cation exchange capacity (CEC), and hydrosoluble ions, both in the whole soil and in its particle‐size separates. The’ largest losses in organic carbon (C) and nitrogen (N) contents of the cultivated soil were observed in the sandy fractions, the lowest in the silt+clay separates. The humification index (HI) indicates a higher degree of humification of the organic matter in NG than in CC samples. For both NG and CC sites the finest fraction (silt+clay) resulted to be enriched in organic C, total N, humus, phenolic compounds, enzyme activity, CEC, and hydrosoluble ions with the only exception of mineral N forms and sulphates (SO4). Slight differences were observed in the mineralogical composition of NG and CC soils. The sandy fractions of NG showed greater amounts of phyllosilicates while a lower content was found in the silt+clay fraction of CC as a consequence of a crumbling of parent rock into small pieces induced by repeated tillage practices.  相似文献   

10.
Olive mill waste water (OMW), a by-product of the olive mill industry, is produced in large amounts in Mediterranean countries. Olive mill waste water contains a high organic load, substantial amounts of plant nutrients but also several compounds with recognized toxicity towards living organisms. Moreover, OMW may represent a low cost source of water. Thus, the use of OMW for soil fertigation is a valuable option for its disposal, provided that its impact on soil chemical and biochemical properties is established. Investigations were performed on the short-term influence of OMW on several chemical and biochemical properties of a soil from a continental semi-arid Mediterranean region (Morocco). The soil was amended with 0, 18 and 36 ml 100 g−1 soil of OMW (corresponding to a field rate of 0, 40 and 80 m3 ha−1, respectively) and changes in various functionally related properties such as microbial biomass, basal respiration, extractable C and N, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties as well as the residual phytotoxicity of OMW amended and non-amended soils as assessed by tomato seed germination tests were also monitored. Temporary and permanent changes in several chemical and biochemical soil properties occurred following OMW application, thus being these properties varied in sensitivity to the applied disturbance. A sudden increase of total organic C, extractable N and C, available P and extractable Mn and Fe contents were measured. Simultaneously, a rapid increase of soil respiration, dehydrogenase and urease activities and microbial biomass (at 14 day incubation) of OMW amended soils occurred. In contrast, the activities of phosphatase, β-glucosidase, nitrate reductase and diphenol oxidase decreased markedly. The soil became highly phytotoxic after OMW addition (large decline of soil germination capability), mainly at 80 m3 ha−1 OMW. After 42 days' incubation, however, a complete recovery of the soil germination capability and a residual phytotoxicity of about 30% were observed with 40 and 80 m3 ha−1 OMW, respectively. These findings indicate that the impact of OMW on soil properties was the result of opposite effects, depending on the relative amounts of beneficial and toxic organic and inorganic compounds present. The toxic compounds contained in OMW most likely counteracted the beneficial effect of organic substrates provided, which promoted the growth and activity of indigenous microorganisms.  相似文献   

11.
Extracellular enzymes degrade complex organic compounds and contribute to carbon turnover in soils. We used physical fractionation procedures to investigate whether soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay-sized fraction. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in particulate organic matter (POM) fractions than in bulk soil, consistent with the rapid turnover of POM fractions. Polyphenol oxidase activity in the clay-sized fraction was 3 times that in the bulk soil, despite a higher mean residence time for carbon in the clay-sized fraction. For most enzymes, differences in activity among fractions and across the restoration chronosequence diminished when adjusted for differences in carbon concentrations. However, glycine aminopeptidase activity per unit carbon increased four-fold across the chronosequence in the clay fraction, while polyphenol oxidase activity declined by 40%. These results suggest that enzyme production and carbon turnover occur rapidly in POM fractions, but slowly in mineral-dominated fractions where enzymes and their carbon substrates are immobilized on mineral surfaces. Soil carbon accumulation in mineral fractions and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular to micron scale, rather than exclusion of enzymes from entire soil fractions. Based on these mechanisms, land managers could increase soil C stocks by reducing the physical disruption of soil structure associated with cultivation.  相似文献   

12.
The 14C age of soil organic matter is known to increase with soil depth. Therefore, the aim of this study was to examine the stabilization of carbon compounds in the entire soil profile using particle size fractionation to distinguish SOM pools with different turnover rates. Samples were taken from a Dystric Cambisol and a Haplic Podzol under forest, which are representative soil types under humid climate conditions. The conceptual approach included the analyses of particle size fractions of all mineral soil horizons for elemental composition and chemical structure of the organic matter by 13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The contribution of phenols and hydroxyalkanoic acids, which represent recalcitrant plant litter compounds, was analyzed after CuO oxidation.In the Dystric Cambisol, the highest carbon concentration as well as the highest percentage of total organic carbon are found in the <6.3 μm fractions of the B and C horizons. In the Haplic Podzol, carbon distribution among the particle size fractions of the Bh and Bvs horizons is influenced by the adsorption of dissolved organic matter. A relationship between the carbon enrichment in fractions <6.3 μm and the 14C activity of the bulk soil indicates that stabilization of SOM occurs in fine particle size fractions of both soils. 13C CPMAS NMR spectroscopy shows that a high concentration of alkyl carbon is present in the fine particle size fractions of the B horizons of the Dystric Cambisol. Decreasing contribution of O-alkyl and aromatic carbon with particle size as well as soil depth indicates that these compounds are not stabilized in the Dystric Cambisol. These results are in accordance with data obtained by wet chemical analyses showing that cutin/suberin-derived hydroxyalkanoic acids are preserved in the fine particle size fractions of the B horizons. The organic matter composition in particle size fractions of the top- and subsoil horizons of the Haplic Podzol shows that this soil is acting like a chromatographic system preserving insoluble alkyl carbon in the fine particle size fractions of the A horizon. Small molecules, most probably organic acids, dominate in the fine particle size fractions of the C horizons, where they are stabilized in clay-sized fractions most likely due to the interaction with the mineral phase. The characterization of lignin-derived phenols indicated, in accordance with the NMR measurements, that these compounds are not stabilized in the mineral soil horizons.  相似文献   

13.
Biosolids compost is a good organic amendment but immature compost can exhibit phytotoxic behavior which can be attributed to different toxic substances. Our objective was to determine the phytotoxicity of: i) Biosolids; ii) Mix of biosolids and wood sawdust sampled a day after composting started; iii) The same material sampled at the end of the thermophilic stage; iv) cured compost; v) cow manure and vi) horse manure A germination bioassay was carried out using Lolium perenne (ryegrass) seeds: germination and root growth percentage were determined as well as electrical conductivity, pH, phenol content and volatile organic acids. In three treatments, Ni, Pb, Zn, Cu and Cd were also determined. Ammonia volatilization was determined during biosolids composting. The germination percentage varied from 67% to 95% but the inhibition of root growth appears to be a more sensitive phytotoxicity indicator (18% to 74%. Phytotoxic effects on germinating ryegrass were mainly related to extract pH and electrical conductivity. Potentially toxic elements, volatile organic acids, phenolic compounds and ammonia were not related to germination.  相似文献   

14.
The Ultisols in the Raña de Cañamero area in Southwest Spain showed aluminum (Al) phytotoxicity, and the clearance of natural vegetation and decades of intensive conventional agriculture caused the deplation of soil organic matter (SOM). Therefore, we studied the long-term effects of no tillage and liming using sugar beet foam (SF) and red gypsum (RG), alone or in combination, on the restoration of Ultisols affected by acidification, Al phytotoxicity, and SOM depletion. We measured the main soil chemical properties, soil microbial biomass, soil enzyme activities involved in carbon, nitrogen, phosphorus, and sulfur mineralization, and the emission of volatile organic compounds (VOCs). The results indicated that liming effectively neutralized the soil acidity in the long term and, in combination with no tillage, significantly increased soil microbial biomass and enzyme activities. Twenty-three VOCs were detected using the proton transfer reaction-time of flight (PTR-ToF) technique, and both liming and tillage changed the VOC emission patterns. The greatest difference in VOC emission pattern was observed between no-tilled un-amended soils and tilled lime-amended soils, suggesting the activation of different metabolic pathways within the microbial communities of soils under different management. Differences in VOC emission patterns could be attributed to the decomposition of carbohydrates, which were also sustained by the higher enzyme activities in the lime-amended soils.  相似文献   

15.
The antioxidant properties of green and roasted coffee, in relation to species (Coffea arabica and Coffea robusta) and degree of roasting (light, medium, dark), were investigated. These properties were evaluated by determining the reducing substances (RS) of coffee and its antioxidant activity (AA) in vitro (model system beta-carotene-linoleic acid) and ex vivo as protective activity (PA) against rat liver cell microsome lipid peroxidation measured as TBA-reacting substances. RS of C. robustasamples were found to be significantly higher when compared to those of C. arabica samples (p < 0.001). AA for green coffee samples were slightly higher than for the corresponding roasted samples while PA was significantly lower in green coffee compared to that of all roasted samples (p < 0.001). Extraction with three different organic solvents (ethyl acetate, ethyl ether, and dichloromethane) showed that the most protective compounds are extracted from acidified dark roasted coffee solutions with ethyl acetate. The analysis of acidic extract by gel filtration chromatography (GFC) gave five fractions. Higher molecular mass fractions were found to possess antioxidant activity while the lower molecular mass fractions showed protective activity. The small amounts of these acidic, low molecular mass protective fractions isolated indicate that they contain very strong protective agents.  相似文献   

16.
The present work investigates the impact of site management on the retention of organic compounds in soil in a long‐term field experiment and focuses on the role of particle size fractions. Specifically, we studied the influence of long‐term farming practices on the soil’s ability to adsorb five hydrophobic organic compounds (HOCs), specifically naphthalene derivatives (naphthalene, 1‐naphthol, 1‐naphthylamine, 1‐hydroxy‐2‐naphthoic acid, 1,4‐naphthoquinone). We examined the sorption on soil and its particle‐size fractions with varying amounts and origins of organic matter in soil amended with farmyard manure and mineral fertilizers over more than 40 years. The soil organic matter had no significant impact on the sorption behaviour of the HOCs. Adsorption on the clay and silt fraction provided a deeper insight into the mechanisms and indicates a strong affinity with adsorption sites of the mineral phase. Naphthalene derivatives with hydrogen atoms in their functional groups adsorbed more strongly than other compounds on to soils containing smaller amounts of organic carbon. Desorption experiments with five organic extractants showed partitioning models for HOCs between extractant and soil surface. Only in experiments with the most polar extractant, formamide, did we observe an influence of the compound’s functional groups on the desorption mechanisms. Column experiments with a HPLC‐system and on‐line UV‐detection proved to be a satisfactory alternative to batch experiments. This approach should enable investigations of adsorption with larger numbers of compounds and soils at the same time.  相似文献   

17.
为探究长期氮输入对草甸草原土壤不同组分有机碳含量及化学结构影响,以内蒙古东北草甸草原为研究对象,于2010年设置0(CK)、30(N30)、50(N50)、100(N100)、150(N150)、200(N200)kg/(hm~2·a) 6个不同施氮水平处理,测定土壤不同组分有机碳含量及红外光谱特征。结果表明:(1)相比CK,长期氮输入条件下可提高土壤总有机碳(SOC)含量(增幅0.3%~13.6%),且主要表现为颗粒有机碳(POC)含量的增加(9.22%~16.39%),但降低土壤轻组有机碳(LOC)含量。(2)红外光谱主成分分析(PCA)结果表明,土壤LOC主要来源于脂肪碳、芳香碳、酚醇化合物,POC主要来源于芳香碳和酚醇化合物,矿物结合有机碳(MOC)主要来源于烷基碳和多糖。(3)相比CK,施氮处理凋落物和LOC官能团中烷氧碳(单糖+多糖)的相对强度降低,烷基碳、芳香碳相对强度增加;土壤POC和MOC官能团中烷氧碳、烷基碳及芳香碳相对强度增加,酚醇化合物相对强度降低;且施氮处理下凋落物及其不同土壤碳组分有机碳结构稳定性(芳香碳/脂肪碳)均高于CK。(4)结构方程模型(SEM)结果...  相似文献   

18.
Chemical and functional characterizations of particle-size and aggregate fractions of soils were performed to investigate whether accessibility and decomposability of organic matter regulate functions and diversity of the soil microbial community at the micro-habitat scale. Soils were physically fractionated into particle size fractions, free-particulate organic matter (F-POM), macro-aggregates (250–2000 μm) and micro-aggregates (53–250 μm). Organic C was enriched in silt and clay, micro-aggregates and F-POM fractions. Enzymes showed the greatest activity in the fine fractions (silt and clay) and F-POM, and were largely influenced by organic C content. MicroResp-CLPP (Community Level Physiological Profile) showed the lowest catabolic responses in the sand and the highest in the fine fraction and micro-aggregates. In general, organic C availability drove soil activity and functional diversity: soils with the higher amount of organic C showed the higher catabolic activity. However, this response was variable within soil fractions, where organic C accessibility, as well as microbial selection and distribution, affected functional diversity.  相似文献   

19.
To study the role of trace elements for the quality and nutritional value of bovine milk, the distribution of selenium, zinc, and copper in whey was investigated using a method linking size exclusion chromatography to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Three major peaks were detected for selenium, two peaks for zinc, and five peaks for copper. More than 65% of the selenium was found in protein fractions, mainly in fractions coinciding with the major whey proteins beta-lactoglobulin and alpha-lactalbumin. All zinc was associated with low molecular weight compounds (<5 kDa) and one of these compounds was probably citrate. More than 60% of the copper eluted in protein fractions and two of the five major peaks probably contained metallothionein and citrate. This method was used to compare milk and whey produced by organic and conventional feeding procedures. The selenium content in whey and desalted milk produced using organic regimens was significantly lower than that in conventional samples. Moreover, the proportion of selenium in protein fractions of organic whey was significantly smaller than that in conventional whey, but the distributions of zinc and copper did not differ. This study showed that with the SEC-ICP-MS technique the distribution profiles of several trace elements in whey could be studied in the same run and that the selenium profile differed in whey produced by organic and conventional procedures.  相似文献   

20.
In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of nitrogenous N-containing compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which other organics could sorb more readily than onto the unconditioned mineral surfaces (“onion” layering model).To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm−3 and analyzed the six fractions for measures of organic matter and mineral phase properties.All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and 14C mean residence time (MRT) increased with particle density from ca. 150 years to >980 years in the four organo-mineral fractions. In contrast, C/N, 13C and 15N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an “onion” layering model.X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation (SDF) isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an “onion” layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or “onion” layering models with this soil. Although SDF isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号