首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyphosate-resistant crops: history, status and future   总被引:16,自引:0,他引:16  
The commercial launch of glyphosate-resistant soybeans in 1996 signaled the beginning of a new era in weed management in row crops. Today, over 80% of the soybeans grown in the USA are glyphosate resistant. Since that time, many crops have been transformed that have allowed crop applications of many classes of herbicide chemistries. Crops currently under production include maize, soybean, cotton and canola. Transformation technology and selection methods have improved and the rate of development as well as the breadth of crops being considered as commercial targets has increased. On the basis of recent adoption rates by growers around the world, it appears that glyphosate-resistant crops will continue to grow in number and in hectares planted. However, global public acceptance of biotechnology-derived products will continue to impact the rate of adoption of this and other new innovations derived from transformation technology.  相似文献   

2.
3.
Imidazolinone-tolerant crops: history, current status and future   总被引:15,自引:0,他引:15  
Imidazolinone herbicides, which include imazapyr, imazapic, imazethapyr, imazamox, imazamethabenz and imazaquin, control weeds by inhibiting the enzyme acetohydroxyacid synthase (AHAS), also called acetolactate synthase (ALS). AHAS is a critical enzyme for the biosynthesis of branched-chain amino acids in plants. Several variant AHAS genes conferring imidazolinone tolerance were discovered in plants through mutagenesis and selection, and were used to create imidazolinone-tolerant maize (Zea mays L), wheat (Triticum aestivum L), rice (Oryza sativa L), oilseed rape (Brassica napus L) and sunflower (Helianthus annuus L). These crops were developed using conventional breeding methods and commercialized as Clearfield* crops from 1992 to the present. Imidazolinone herbicides control a broad spectrum of grass and broadleaf weeds in imidazolinone-tolerant crops, including weeds that are closely related to the crop itself and some key parasitic weeds. Imidazolinone-tolerant crops may also prevent rotational crop injury and injury caused by interaction between AHAS-inhibiting herbicides and insecticides. A single target-site mutation in the AHAS gene may confer tolerance to AHAS-inhibiting herbicides, so that it is technically possible to develop the imidazolinone-tolerance trait in many crops. Activities are currently directed toward the continued improvement of imidazolinone tolerance and development of new Clearfield* crops. Management of herbicide-resistant weeds and gene flow from crops to weeds are issues that must be considered with the development of any herbicide-resistant crop. Thus extensive stewardship programs have been developed to address these issues for Clearfield* crops.  相似文献   

4.
在数字经济时代,信息是影响农户行为的关键因素.作为重要信息获取渠道的社会网络、互联网使用对农户技术采纳行为产生深刻影响,但是二者在影响农户技术采纳行为过程中究竟存在互补关系还是替代关系尚未取得一致看法.文中以708个蔬菜种植户为调查对象,采用有序Probit模型,实证分析社会网络和互联网使用对农户绿色生产技术采纳行为的...  相似文献   

5.
Approaches to the biological control of weeds in arable crops and integration of biological weed control with other methods of weed management are broadly discussed. Various types of integrative approaches to biological control of weeds in crops have been studied within the framework of a concerted European Research Programme (COST‐816). During the period 1994–99, some 25 institutions from 16 countries have concentrated on five target weed complexes. Some major scientific achievements of COST‐816 are: (i) combination of the pathogen Ascochyta caulina with an isolated phytotoxin produced by this fungus to control Chenopodium album in maize and sugar beet; (ii) the elaboration and preliminary field application of a system management approach using the weed:pathogen system Senecio vulgaris:Puccinia lagenophorae to reduce the competitiveness of the weed by inducing and stimulating a disease epidemic; (iii) combination of underseeded green cover with the application of spores of Stagonospora convolvuli to control Convolvulus species in maize; (iv) assessment of the response of different provenances of Amaranthus spp. to infection by Alternaria alternata and Trematophoma lignicola, the development of formulation and delivery techniques and a field survey of native insect species to control Amaranthus spp. in sugar beet and maize; (v) isolation of strains of different Fusarium spp. that infect all the economically important Orobanche spp. and development of novel, storable formulations using mycelia from liquid culture. Although no practical control has yet been reached for any of the five target weeds, potential solutions have been clearly identified. Two major routes may be followed in future work. The first is a technological approach focusing on a single, highly destructive disease cycle of the control agent and optimizing the efficacy and specificity of the agent. The second is an ecological approach based on a better understanding of the interactions among the crop, the weed, the natural antagonist and the environment, which must be managed in order to maximize the spread and impact of an indigenous antagonist on the weed.  相似文献   

6.
非转基因抗除草剂作物研究现状与展望   总被引:1,自引:0,他引:1  
抗除草剂转基因作物的培育和推广明显提高了农田除草效率,取得了巨大的经济效益。但随着研究的深入,外源基因的不可预测性却越来越多地阻碍了转基因作物的发展。针对转基因作物与非转基因作物的优缺点,该文系统地综述了国内外抗除草剂作物的研究现状,重点阐述了非转基因抗除草剂作物的主要研究方法及存在的问题,并提出研究对策和发展方向。  相似文献   

7.
In recent years, the use of predatory mirid bugs (Hemiptera: Miridae) in horticultural crops has increased considerably. Mirid bugs are zoophytophagous predators, that is, they display omnivorous behavior and feed on both plants and arthropods. Mirid bugs feed effectively on a wide range of prey, such as whiteflies, lepidopteran eggs and mites. In addition, the phytophagous behavior of mirid bugs can activate defenses in the plants on which they feed. Despite the positive biological attributes, their use still presents some constraints. Their establishment and retention on the crop is not always easy and economic plant damage can be caused by some mirid species. In this review, the current strategies for using zoophytophagous mirid bugs in horticultural crops, mainly Nesidiocoris tenuis, Macrolophus pygmaeus and Dicyphus hesperus, are reviewed. We discuss six different approaches which, in our opinion, can optimize the efficacy of mirids as biocontrol agents and help expand their use into more areas worldwide. In this review we (i) highlight the large number of species and biotypes which are yet to be described and explore their applicability, (ii) present how it is possible to take advantage of the mirid‐induced plant defenses to improve pest management, (iii) argue that genetic selection of improved mirid strains is feasible, (iv) explore the use of companion plants and the use of alternative foods to improve the mirid bug management, and finally (vi) discuss strategies for the expansion of mirid bugs as biological control agents to horticultural crops other than just tomatoes. © 2020 Society of Chemical Industry  相似文献   

8.
Economic and herbicide use impacts of glyphosate-resistant crops   总被引:4,自引:0,他引:4  
More than 95% of United States maize, cotton, soybean and sugarbeet acres are treated with herbicides for weed control. These products are used to improve the economic profitability of crop production for farmers. Since their introduction in 1996, over 75 million acres of genetically engineered glyphosate-resistant crops have been planted, making up 80% of soybean acres and 70% of cotton acres in the USA. These genetically engineered crops have been adopted by farmers because they are perceived to offer greater economic benefits than conventional crop and herbicide programs. The adoption of glyphosate-resistant crops has saved US farmers 1.2 billion dollars associated with the costs of conventional herbicide purchases, application, tillage and hand weeding. With the adoption of glyphosate-resistant sugarbeets on currently planted sugarbeet acres, US growers could potentially save an additional 93 million dollars. The adoption of glyphosate-resistant crops by US agriculture has reduced herbicide use by 37.5 million lbs, although the adoption of glyphosate-resistant sugarbeets would dampen this reduction by 1 million lbs.  相似文献   

9.
抗草甘膦杂草及其抗性机制研究进展   总被引:10,自引:1,他引:10  
介绍了迄今为止全球发现的13种抗草甘膦杂草的发生、发展,并从草甘膦的吸收、输导和分布,5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPS)的活性以及抗药性遗传等方面对其抗性机制进行了讨论,指出了中国在未来出现抗草甘膦杂草的潜在风险性,并提出了延缓杂草对草甘膦抗性发生的策略。  相似文献   

10.
Transgenic soybean, resistant to glyphosate, represents a revolutionary breakthrough in weed control technology. Transgenic soybean is the most dominant among all transgenic crops grown commercially in the world. In 2000, glyphosate-resistant (GR) soybean was planted to 25.8 million hectares globally, which amounts to 58% of the total global transgenic crop area. The United States soybean area planted with GR soybean has increased from 2% in 1996 to 68% in 2001. Glyphosate-resistant soybean as a weed management tool has provided farmers with the opportunity and flexibility to manage a broad spectrum of weeds. The use of glyphosate in GR soybean offers another alternative to manage weeds that are resistant to other herbicides. The rapid increase in GR soybean area is caused by the simplicity of using only one herbicide and a lower cost for weed control. Adoption of GR soybean has resulted in a dramatic decrease in the area treated with other herbicides. Glyphosphate-resistant soybean should not be relied on solely to the exclusion of other weed control methods, and should be used within integrated weed management systems. Over-reliance on GR soybean could lead to problems such as shifts in weed species and population, and the development of glyphosate-resistant weeds. The challenge is for soybean farmers to understand these problems, and for weed scientists to communicate with farmers that continuous use of glyphosate may diminish the opportunity of GR soybean as a weed management tool in the future.  相似文献   

11.
Herbicide resistance is an evolutionary event resulting from intense herbicide selection over genetically diverse weed populations. In South America, orchard, cereal and legume cropping systems show a strong dependence on glyphosate to control weeds. The goal of this report is to review the current knowledge on cases of evolved glyphosate-resistant weeds in South American agriculture. The first reports of glyphosate resistance include populations of highly diverse taxa (Lolium multiflorum Lam., Conyza bonariensis L., C. canadensis L.). In all instances, resistance evolution followed intense glyphosate use in fruit fields of Chile and Brazil. In fruit orchards from Colombia, Parthenium hysterophorus L. has shown the ability to withstand high glyphosate rates. The recent appearance of glyphosate-resistant Sorghum halepense L. and Euphorbia heterophylla L. in glyphosate-resistant soybean fields of Argentina and Brazil, respectively, is of major concern. The evolution of glyphosate resistance has clearly taken place in those agroecosystems where glyphosate exerts a strong and continuous selection pressure on weeds. The massive adoption of no-till practices together with the utilization of glyphosate-resistant soybean crops are factors encouraging increase in glyphosate use. This phenomenon has been more evident in Argentina and Brazil. The exclusive reliance on glyphosate as the main tool for weed management results in agroecosystems biologically more prone to glyphosate resistance evolution.  相似文献   

12.
利用化学激发子防控作物害虫研究进展   总被引:1,自引:1,他引:0  
诱导防御反应是植物抵御害虫为害的一种重要机制。在这一防御机制中,各种化学激发子,包括植食性昆虫相关分子模式、植物激素及其类似物、植物激发子多肽等发挥着重要作用。合理开发利用这些化学激发子,可望帮助植物建立一种天然的防御体系,从而降低害虫种群密度、减轻害虫为害,减少化学农药使用量。本文将主要对诱导植物抗虫性的化学激发子的最新研究成果进行概述,并展示利用化学激发子防控田间作物害虫的最新研究案例,提出亟待解决的问题,以促进化学激发子在作物害虫防控中的应用。  相似文献   

13.
Rhizogenic Agrobacterium biovar 1, harbouring an Ri‐plasmid (root‐inducing plasmid), is the causative agent of hairy root disease (HRD) in the hydroponic cultivation of tomato, cucumber and aubergine. The disease is characterized by extensive root proliferation leading to strong vegetative growth and, in severe cases, substantial losses in marketable yield. Agrobacterium biovar 1 is a heterogeneous group of agrobacteria and includes at least 10 genomospecies, among which at least four (G1, G3, G8 and G9) have been associated with HRD in hydroponically grown vegetables. This review has synthesized the current knowledge on rhizogenic Agrobacterium biovar 1, including infection process, current taxonomic status, genetic and phenotypic diversity, detection methods and strategies for disease control. With regard to the latter, symptom reduction and prevention of infection through cultivation methods and chemical disinfection (e.g. by the use of chlorine‐based disinfectants and hydrogen peroxide) are discussed and biocontrol strategies are elaborated on. Recent research has led to the identification of a phylogenetically related clade of Paenibacillus strains that have antagonistic activity against rhizogenic Agrobacterium biovar 1 strains, holding great potential for HRD control. Finally, possible directions for future research are proposed.  相似文献   

14.
Crops resistant to insect attack offer an alternative strategy of pest control to a total reliance upon chemical pesticides. Transgenic plant technology can be a useful tool in producing resistant crops, by introducing novel resistance genes into a plant species. This technology is seen very much as forming an integral component of a crop management programme. Several different classes of plant proteins have been shown to be insecticidal towards a range of economically important insect pests from different orders; in some cases a role in the defence of specific plant species against phytophagous insects has been demonstrated. Genes encoding insecticidal proteins have been isolated from various plant species and transferred to crops by genetic engineering. Amongst these genes are those that encode inhibitors of proteases (serine and cysteine) and α-amylase, lectins, and enzymes such as chitinases and lipoxygenases. Examples of genetically engineered crops expressing insecticidal plant proteins from different plant species, with enhanced resistance to one or more insect pests from the orders Lepidoptera, Homoptera and Coleoptera are presented. The possibility of ‘pyramiding’ different resistance genes to improve the effectiveness of protection and durability is discussed and exemplified. The number of different crop species expressing such genes is very diverse and ever-increasing. The viability of this approach to crop protection is considered. © 1998 SCI.  相似文献   

15.
Ticks are important vectors of human and animal diseases. One important protective measure against ticks is the use of personal arthropod repellents. Deet and the synthetic pyrethroid permethrin currently serve as the primary personal protective measures against ticks. Concern over the safety of deet and its low repellency against some tick species has led to a search for new user-approved, efficacious tick repellents. In this article, we review the history and efficacy of tick repellents, discovery of new repellents, and areas in need of attention such as assay methodology, repellent formulation, and the lack of information about the physiology of repellency.  相似文献   

16.
Developments relating to the control of application equipment can deliver improvements in pesticide use by better matching applications to target requirements. This may have components relating to the spatial distribution of a weed, pest or disease or methods by which the target, particularly a crop canopy, can be described with respect to a given application. Changes in application can relate to the dose and/or volume applied, but may also concern the way in which a treatment is delivered in terms of parameters such as spray trajectory angle and droplet size distribution. For many weed species there is evidence of patchy distributions in field situations. Studies have shown that savings of typically up to 40% in herbicide use can be achieved by adopting patch spraying approaches in such situations. Weed patch detection is key to the performance of such patch spraying systems. In widely spaced rowcrops such as vegetables, there is considerable scope for developing fully automated detection systems based on image analysis, and for the development of accurate guidance systems that apply pesticides only to the crop row. In crops with a relatively high plant density, weed detection in the medium/short term is likely to be based on manual discrimination. The costs of labour for manual weed patch mapping have been estimated at less than 1.50 ha(-1) pounds sterling. Potential savings in pesticide use can also be made if applications are matched to crop canopy structure. This is most important in bush and tree crops where savings of up to 75% in pesticide use could be achieved. In crops such as cereals, studies have shown that savings in fungicide use may be possible, particularly at earlier stages of growth by adjusting spray delivery to measured canopy characteristics. Key components of the performance of application systems concern the ability to deliver over a dose rate range of more than 3:1 while maintaining control of variables such as delivery trajectory angle and spray quality. Traceability and the effective monitoring of applications is likely to be a major driver influencing the uptake of more sophisticated control systems. Methods of labelling pesticides with systems that can be read by the application unit will be an important step in the development of recording and data handling systems that will operate safely with the minimum of operator input and enable the environmental advantages of targeted pesticide application to be monitored.  相似文献   

17.
18.
Mechanisms of herbicide resistance include (1) modified target site, (2) enhanced detoxification or delayed activation, and (3) alterations in the uptake, translocation, or compartmentalization of a herbicide. The first two mechanisms have mainly been identified in plants. Herbicide resistance genes were isolated for several herbicides of different modes of action. Genes that coded for herbicide target or detoxification enzymes were transferred into crop plants. The transgenic plants expressing these genes were tolerant of the active ingredients of herbicides. Before commercialization, the transgenic plants were tested in the field for risk assessment. In the case of crops with herbicide detoxification enzymes, including cytochrome-P450-species-metabolizing xenobiotics, the substrate specificity of the enzymes as well as the toxicological properties of the herbicide metabolites and the pattern of secondary metabolites in plants must be evaluated. © 1999 Society of Chemical Industry  相似文献   

19.
20.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号