首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

3.
Objectives: To compare number of cycles to failure for palmarodorsal 4‐point bending of a modified 5.5 mm broad locking compression plate (M5.5‐LCP) fixation with a 5.5 mm broad LCP (5.5‐LCP) fixation used to repair osteotomized equine third metacarpal (MC3) bones. Study Design: In vitro biomechanical testing. Animal Population: Adult equine cadaveric MC3 bones (n=6 pairs). Methods: An 8‐hole, M5.5‐LCP, obtained by having a 1.0 mm thickness removed from the bone contact portion of the 5.5‐LCP, was applied to the dorsal surface of 1 randomly selected MC3 from each pair, and an 8‐hole, 5.5‐LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. Plates and screws were applied using standard ASIF techniques to MC3 bones with a mid‐diaphyseal osteotomy. MC3 constructs had palmarodorsal 4‐point bending cyclic fatigue testing. Mean cycles to failure for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results: Mean±SD cycles to failure of the M5.5‐LCP fixation (188,641±17,971) was significantly greater than that of the 5.5‐LCP fixation (166,497±15,539). Conclusion: M5.5‐LCP fixation was superior to 5.5‐LCP fixation of osteotomized equine MC3 bones in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: This suggests that biological plate fixation is not the ideal choice for osteotomized equine MC3 bones.  相似文献   

4.
Objectives— To compare (1) pullout properties between 3.5 mm cortical and locking screws, and (2) mechanical properties and gap displacements between the 3.5 mm broad limited‐contact dynamic compression plate (LC‐DCP), broad dynamic compression plate (DCP), and narrow locking compression plate (LCP), during axial loading of plate‐stabilized diaphyseal fragments with an interfragmentary gap. Study Design— In vitro mechanical testing of implanted polyurethane foam (PUF) hollow cylinders that simulated compact or osteopenic diaphyseal bone. Sample Population— (1) Five cortical and locking screws and (2) 4 PUF‐plate constructs for each plate type; using high‐ and low‐density (0.8 and 0.32 g/cm3) cylinders. Methods— (1) Screws were completely extracted at 5 mm/min. (2) Plated constructs were axially compressed at 300 N/s for 10 cycles from 5 to 355 N to determine gap displacement during physiologic loading, followed by single cycle increasing load to failure. Results— Pullout properties were not different between screw types. All plate constructs had yield loads over 3 times trotting loads. Gap closure occurred with LC‐DCP and DCP constructs, but not LCP constructs. LCP construct properties were most similar to LC‐DCP and DCP construct properties in the low‐density model. Conclusion— All plate systems sustained physiologic limb loads. Only LCP constructs maintained some gap integrity, although LC‐DCP and DCP screws were placed in neutral position. Clinical Relevance— The LCP system is more likely than LC‐DCP and DCP systems, with neutrally positioned screws, to maintain a planned interfragmentary gap, although gap strains range from 0% to 15% across the 2 mm gap during a trot load.  相似文献   

5.
6.
7.
Seven-hole 3.5 mm broad and 5-hole 4.5 mm narrow dynamic compression plates were applied to paired canine cadaveric tibias in a stable fracture model. Paired tibias were tested to acute failure in rotation and four-point bending, and to fatigue failure in four-point bending. Resistance to screw pullout was measured for three 3.5 mm cortical screws and two 4.5 mm cortical screws inserted in the configurations of the bone plates. All plate-bone systems failed by fracture of the bone through a screw hole. The 3.5 mm plate-bone system was stronger in acute failure in rotation and in four-point bending. There was no difference in stiffness, and no difference in the number of cycles to failure in fatigue testing. Three 3.5 mm screws had greater resistance to pullout than two 4.5 mm screws. Results indicate that the 7-hole 3.5 mm broad dynamic compression plate has a biomechanical advantage over the 5-hole 4.5 mm narrow dynamic compression plate.  相似文献   

8.
9.
10.
11.
12.
Objective— To compare the accuracy of reduction and the biomechanical characteristics of canine acetabular osteotomies stabilized with locking versus standard screws in a locking plate. Study Design— Ex vivo biomechanical study. Sample Population— Cadaveric canine hemipelves and corresponding femurs (n=10 paired). Methods— Transverse acetabular osteotomies stabilized with 5‐hole 2.4 mm uniLOCK® reconstruction plates using either 2.4 mm locking monocortical or standard bicortical screw fixation (Synthes® Maxillofacial). Fracture reduction was assessed directly (craniocaudal acetabular width measurements and gross observation) and indirectly (impression casts). All constructs were fatigue‐tested, followed by acute destructive testing. All outcome measures (mean±SD) were evaluated for significance (P<.05) using paired t‐tests. Results— Craniocaudal acetabular diameters before and after fixation were not significantly different (21.9±1.2 and 21.5±1.2 mm; P=.45). No significant differences were observed in acetabular width differences between pre‐ and postoperative fixation between groups (locking ?0.4±0.4 mm; standard ?0.4±0.3 mm; P=.76). Grossly, there was no significant difference in the repairs and impression casts did not reveal a significant (P=.75) difference in congruency between the groups. No significant differences were found in fracture gap between groups either dorsally (locking 0.38±0.23 mm versus standard 0.22±0.05 mm; P=.30) or ventrally (locking 0.80±0.79 mm versus standard 0.35±0.13 mm; P=.23), and maximum change in amplitude dorsally (locking 0.96±2.15 mm versus standard 0.92±0.89 mm; P=.96) or ventrally (locking 2.02±2.93 mm versus standard 0.15±0.81 mm; P=.25). There were no significant differences in stiffness (locking 241±46 N/mm versus standard 283±209 N/mm; P=.64) or load to failure (locking 1077±950 N versus standard 811±248 N; P=.49). Conclusion— No significant differences were found between pelves stabilized with locking monocortical screw fixation or standard bicortical screw fixation with respect to joint congruity, displacement of fracture gap after cyclic loading, construct stiffness, or ultimate load to failure. Clinical Relevance— There is no apparent advantage of locking plate fixation over standard plate fixation of 2‐piece ex vivo acetabular fractures using the 2.4 mm uniLOCK® reconstruction plate.  相似文献   

13.
Objectives: To compare the biomechanical characteristics of 2 arthrodesis techniques for the equine proximal interphalangeal joint (PIP) using either a 3‐hole 4.5 mm locking compression plate (LCP) or 3‐hole 4.5 mm narrow dynamic compression plate (DCP), both with 2 transarticular 5.5 mm cortex screws. Study Design: Experimental. Sample Population: Cadaveric adult equine forelimbs (*n=6 pairs). Methods: For each forelimb pair, 1 limb was randomly assigned to 1 of 2 treatment groups and the contralateral limb by default to the other treatment group. Construct stiffness, gap formation across the PIP joint, and rotation about the PIP joint were determined for each construct before cyclic axial loading and after each of four, 5000 cycle loading regimens. After the 20,000 cycle axial loading regimen, each construct was loaded to failure. Results: There were no significant differences in construct stiffness, gap formation, or sagittal plane rotation between the LCP and DCP treatment groups at any of the measured time points. Conclusion: Biomechanically, fixation of the equine PIP joint with a 3‐hole 4.5 mm LCP is equivalent to fixation with a 3‐hole 4.5 mm narrow DCP under the test conditions used.  相似文献   

14.
15.
OBJECTIVE: To evaluate and compare the mechanical properties of 4.5 narrow and 3.5 broad plating systems using their respective cortical and cancellous screws in unstable, central, and eccentric gap fracture models. STUDY DESIGN: Mechanical evaluation and comparison of 2 dynamic compression plate (DCP) systems. SAMPLE POPULATION: Eighteen cortical and 30 cancellous gapped fracture models. METHODS: DCP (4.5 mm narrow, 3.5 mm broad) with their respective cortical screws were applied to cortical bone density polyurethane foam blocks to construct center gap cortical fracture models that were tested in gap closing monotonic 4-point bending. DCP (4.5 mm narrow, 3.5 mm broad) with their respective cancellous screws were applied to cancellous bone density polyurethane foam blocks to construct eccentric gap cancellous fracture models. The cancellous constructs were tested in monotonic gap opening and gap closing cantilever bending and in cyclic axial loading. Univariate and multivariate repeated measures ANOVA were used to compare the maximum loads at failure of the 4.5 mm constructs and 3.5 mm constructs. RESULTS: The 4.5 mm narrow plating system withstood significantly higher loads at failure than the 3.5 mm broad plating system in 4-point bending (P<.0001) and gap opening cantilever bending (P<.0001). The 4.5 mm system failed in gap closing cantilever bending by plastic deformation of the plate, whereas the 3.5 mm system failed by screw pullout. There was no difference between the 2 systems in cyclic axial loading. CONCLUSION: Results indicate that the 4.5 mm narrow plating system has a mechanical advantage over the 3.5 mm broad plating system for stabilization of gapped fracture models. CLINICAL RELEVANCE: The 4.5 mm narrow plating system may be mechanically advantageous compared with the 3.5 mm broad plating system for stabilizing unreconstructed comminuted long bone fractures in large dogs.  相似文献   

16.
17.
18.
The objective of this study was to examine the differences in calpain system, desmin degradation, pH values and water holding capacity (WHC) between muscles of commercial Meishan and Duroc × Landrace × Yorkshire crossbred pigs. Meishan pork presented better WHC evidenced by lower purge loss at days 1 and 3 and less centrifugation loss at day 1 post mortem (P < 0.05). pH values at 45 min post mortem in Meishan pork were significantly higher compared to crossbred pork (P < 0.05). Calpain‐1 messenger RNA (mRNA) expression was lower in Meishan pork compared to that from crossbred pork (P < 0.05). Additionally, calpain‐1 activity, the ratio of calpain‐1 to calpastatin activity and desmin degradation were lower in Meishan pork compared to those from crossbred pork samples (P < 0.05). The results indicate that the calpain system including mRNA expression and activity were different between commercial Meishan and crossbred pork resulting in difference in the degree of desmin degradation during post mortem aging. pH values at 45 min and 24 h post mortem rather than calpain activity and desmin degradation could explain the higher water holding capacity in commercial Meishan pork.  相似文献   

19.
20.
Objectives— To compare monotonic biomechanical properties and fatigue life of a 5.5 mm broad limited‐contact dynamic compression plate (5.5‐LC‐DCP) fixation with a 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Sample Population— Adult equine cadaveric MC3 bones (n=18 pair). Methods— MC3 were divided into 3 test groups (6 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 5.5 mm broad LC‐DCP (5.5‐LC‐DCP) was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) was applied dorsally to the contralateral bone from each pair. Plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t–test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment under 4‐point bending, single cycle to failure, of the 5.5‐LC‐DCP fixation were significantly greater (P<.024) than those of the 4.5‐LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly (P<.05) greater for the 4.5‐LC‐DCP fixation compared with the 5.5‐LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion for the 5.5‐LC‐DCP fixation was not significantly different (P>.05) than those with the 4.5‐LC‐DCP fixation. Conclusion— 5.5‐LC‐DCP fixation was superior to 4.5‐LC‐DCP fixation in resisting the static overload forces under palmarodorsal 4‐point bending. There was no significant difference between 5.5‐LC‐DCP fixation and 4.5‐LC‐DCP fixation in resisting static overload forces under torsion; however, the 5.5‐LC‐DCP offers significantly less stability (80% of that of the 4.5‐LC‐DCP) in cyclic fatigue testing. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for long bone fracture repair in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号