首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Objective— Compare the biomechanical characteristics of screw and wire fixation with and without polymethylmethacrylate (PMMA) re-enforcement for acetabular osteotomy stabilization in dogs. Animals— Pelves removed from 8 adult mixed breed dogs weighing between 25 and 30 kg. Procedure— The pubic symphysis of each pelvis was split and a central transverse acetabular osteotomy was performed. One hemipelvis from each dog was stabilized with the composite fixation (interfragmentary Kirschner wire, two screws and a figure-of-eight orthopedic wire with PMMA). The contralateral hemipelves was stabilized with an interfragmentary Kirschner wire, two screws, and a figure-of-eight orthopedic wire without PMMA. All hemipelves were tested in bending by using a materials testing machine at a cross head speed of 5 mm/min. An extensometer was placed on the dorsomedial surface of the hemipelves centered over acetabular osteotomy to record distraction of the osteotomy during loading. A load/deformation curve and a load/distraction curve was produced for each hemipelvis. The slope for the initial linear portion of the load/deformation curve and the load/distraction curve, yield load and maximum load sustained were compared between repair groups using a paired t-test with P < .05 considered significant. Results— The slope of the load/deformation curve was significantly greater (P= .001 ) for hemipelves stabilized with the composite fixation (mean ± SD: 69 ± 18 N/mm) compared with hemipelves stabilized without PMMA (mean ± SD: 39 ± 8 N/mm). There was no significant difference (P= .593 ) between repair groups in the slope of the load/distraction curves as measured on the extensometer. Yield load was significantly greater (P= .0002 ) for hemipelves stabilized with the composite fixation (mean ± SD: 184 ± 25 N) compared to hemipelves stabilized without PMMA (mean ± SD: 74 ± 12 N). Maximum load sustained was also significantly greater (P= .013 ) for hemipelves stabilized with the composite fixation (mean ± SD: 396 ± 71 N) compared to hemipelves stabilized without PMMA (mean ± SD: 265 ± 94 N). Failure of hemipelves stabilized with the composite fixation occurred primarily by ventrolateral bending of the cranial and caudal pelvic segments at the osteotomy site. Failure of hemipelves stabilized without PMMA occurred by ventrolateral bending of the cranial and caudal pelvic segments at the osteotomy site with pronounced concurrent ventrolateral rotation of the cranial pelvic segment. Conclusion— PMMA improves the mechanical characteristics of acetabular fracture fixation, at least in part by neutralization of rotational forces. The results of this study justify use of PMMA as a component of the composite fixation when repairing acetabular fractures.  相似文献   

6.
7.
8.
9.
This study tested the hypothesis that two-way insertion of an external skeletal fixator trans-fixation pin would weaken the pin-bone interface. Smooth and partially threaded (end) trans-fixation pins were placed in tibiae of 32 cadavers by slow speed drilling or hand placement through a predrilled pilot hole. In one bone of each tibial pair, pins were inserted 2 cm beyond the distal cortex and retracted to a predetermined position (two-way). In the contralateral limb, the pins were inserted in one forward motion to the predetermined position (one-way). The peak force (Newtons) required to extract the pins (pull-out strength) axially at a rate of 1 mm/sec was determined by using a universal testing machine. A significant (p < .05) decrease in pull-out strength was found in pins placed by two-way insertion (674 +/- 410) as opposed to one-way insertion (766 +/- 432). The results of this in vitro study suggest that one-way insertion should be used clinically to decrease weakening of the pin-bone interface and prevent possible failure of external fixators. A significantly greater pull-out strength was found for threaded pins placed in the proximal diaphysis (1459 +/- 330 Newtons) compared to the distal metaphysis (873 +/- 297 Newtons).  相似文献   

10.
Objective— To study the kinematics of cervical spine segment C4–C5 and its association with disc dimensions and the coupled motion (CM) in relation to primary motion (PM).
Study Design— Cadaveric biomechanical study.
Animals— Cadavers of large breed dogs (>20 kg; n=11).
Methods— Spines were freed from muscles. Radiographs were taken orthogonal to the C4–C5 disc space and disc thickness, endplate width, and height were measured. Spines were mounted on a simulator for 3-dimensional motion analysis. Data were recorded with an optoelectronic motion analysis system. Range of motion (ROM) and neutral zone (NZ) were determined in the direction of flexion/extension, left/right lateral bending, and left/right axial rotation, as well as the ROM of CM.
Results— ROM in flexion and extension was similar; there was no CM in flexion/extension. Left/right axial rotation and left/right lateral bending were coupled to the same side. CM was 1.72 and 3.56 times the ROM of the PM in lateral bending and axial rotation, respectively. Disc dimensions were positively correlated with body weight. Flexion/extension magnitude was significantly reduced for larger endplates, but axial rotation was not influenced. Lateral bending had no correlation with weight or disc dimensions.
Conclusion— Left/right lateral bending and left/right axial rotation are coupled differently in the C4–C5 segment in dogs compared with humans.
Clinical Relevance— The canine C4–C5 spinal segment has unique motion coupling patterns that should be considered for dynamic implant designs.  相似文献   

11.
12.
13.
14.
OBJECTIVE: To compare the microstructural damage created in bone by pins with lathe-cut and rolled-on threads, and to determine the peak tip temperature and damage created by positive-profile external fixator pins with either hollow ground (HG) or trocar (T) tips during insertion. STUDY DESIGN: An acute, in vitro biomechanical evaluation. SAMPLE POPULATION: Twenty-seven canine tibiae. METHODS: Lathe-cut thread design with T point (LT-T), rolled-on thread design with T point (RT-T), and rolled-on thread design with HG point (RT-HG) pins were evaluated. Twenty pins of each type were inserted under constant drilling pressure into 12 canine tibiae (12 diaphyseal and 8 metaphyseal sites per pin type). Peak pin tip temperature, drilling energy, end-insertional pin torque, and pullout force were measured for each pin. For the histologic study, five pins of each type were inserted into cortical and cancellous sites in 15 additional tibiae. Entry and exit damage, and thread quality were assessed from 100 micron histologic sections by using computer-interfaced videomicroscopy. RESULTS: T-tipped pins reached higher tip temperature in both diaphyseal and metaphyseal bone compared with HG-tipped pins. RT-T pins had higher pullout strength (diaphyseal) and end-insertional torque compared with other combinations. No differences in drilling energy or insertional bone damage was found between the three pin types (P < .05). CONCLUSIONS: T-tipped pins mechanically outperformed HG-tipped pins. Pin tip and thread design did not significantly influence the degree of insertional bone damage. CLINICAL RELEVANCE: T-tipped pins may provide the best compromise between thermal damage and interface friction for maximizing performance of threaded external fixator pins.  相似文献   

15.
16.
17.
We compared the pin-bone interfaces at the near and far cortical penetration sites of positive-profile end-threaded external fixation pins in cadaveric canine tibiae. The holding power of the pins in each cortical surface was independently measured in 21 pin-bone sections. Scanning electron microscopy (SEM) was used to compare subjectively the microstructural appearance of the pin-bone interfaces at the near and far cortical penetration sites in eight pin-bone sections. The far cortical penetration site provided greater holding power than did the near cortical site. SEM evaluation suggested more bony microfractures and debris with less pin-bone interlock in the near cortical penetration sites than in the corresponding far cortical penetration sites. This study showed that after low-speed power insertion of positive-profile end-threaded pins in canine cadaveric tibiae, the near cortical penetration site contributes approximately 25% less to the overall holding power of the pin than does the far cortical penetration site.  相似文献   

18.
The effects of three different techniques of intramedullary (IM) pin placement on pin location and incidence of stifle joint injury were evaluated using 70 cadaver canine tibiae after middisphyseal osteotomy. In 50 tibiae, pins were placed retrograde in either a nondirected (group A) or a craniomedially directed fashion (group B) with 25 tibiae in each group. Pins were driven normograde (group N) in 20 tibiae. All the stifles were dissected to qualitatively evaluate pin interference with different joint structures. End-on radiographs of the tibial plateaus were used to quantitatively evaluate pin location. Interference with the caudal cruciate ligament, medial meniscus, lateral meniscus, or meniscal ligaments was not observed in any group. There was a significant association between pinning technique and incidence of involvement of the cranial cruciate ligament ( P < .005), patella ( P < .001), patellar ligament ( P < .005), and femoral condyle ( P < .01). Pin location for group A was significantly different from either other group in a cranial-caudal direction ( P = .003), and was significantly different from group N in a medial-lateral direction ( P = .005). No significant difference was observed between pin location for groups B and N in either plane. It was concluded that although nondirected retrograde pinning cannot be recommended, retrograde pins directed craniomedially may be an acceptable technique for the repair of proximal to mid-diaphyseal tibial fractures if care is taken to properly seat the pins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号