首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing temperatures pose a significant threat to crop production in the tropics. A field experiment was conducted with mung bean at three locations in Sri Lanka representing an increasing temperature gradient (24.4–30.1 °C) during two consecutive seasons to (i) determine the response of mung bean to increasing temperature and (ii) test a selected set of crop management practices aimed at decreasing essential inputs such as water, synthetic pesticides and inorganic nitrogen fertilizer. The control treatment (T1) consisted of standard crop management including irrigation, chemical crop protection and inorganic fertilizer application. Adaptation system 1 (T2) included mulching with rice straw at 8 t ha?1 with 30 % less irrigation and crop protection and nutrient management as in T1. Adaptation system 2 (T3) included crop protection using a pretested integrated pest management package with water and nutrient management as in T2. In adaptation system 3 (T4), 25 % of the crop's nitrogen requirement was given as organic manure (compost) at 0.8 t ha?1 while 75 % was given as inorganic fertilizer with water management and crop protection as in T3. Durations of both pre‐ and post‐flowering phases were reduced with increasing temperature. In the warmer (25.4–30.1 °C) yala season, seed yield (Y) of T1 decreased with increasing temperature at 366 kg ha?1 °C?1. However, in maha season, Y did not show a significant relationship across the narrower temperature gradient from 24.4 to 25.8 °C. Pooling the data from both seasons showed a second‐order polynomial response with an optimum temperature of 26.5 °C. In addition to shortened durations, reduced crop growth rates and reduced pod numbers per plant were responsible for yield reductions at higher temperatures. In yala, yields of all adaptation systems at all locations were on par with yields of the respective controls. Furthermore, yala yields of T2 and T3 were less sensitive than T1 to increasing temperatures (265 and 288 kg ha?1 °C?1). In maha, T3 and T4 had greater yields than the control at the relatively cooler site while having lower yields than the control at the warmer site. Maha yields of T2 were on par with the control at both temperature regimes. While demonstrating the significant temperature sensitivity of mung bean yields, results of the present work showed that components of the tested adaptation systems could be promoted among smallholder farmers in Asia, especially in view of their long‐term environmental benefits and contributions to sustainable agriculture in a warmer and drier future climate.  相似文献   

2.
Field experiments conducted in 2007/08 and 2008/09 at the Changwu Agricultural Research Station on the Loess Plateau of China comprised three seeding rates (SR1: 225 seeds m−2, SR2: 280 seeds m−2, and SR3: 340 seeds m−2) and two root pruning treatments (W: root pruning in the over-wintering period and S: root pruning at the spring-growth stage), with the un-pruned wheat plants as controls. In the severe drought toward the end of the growing season of 2008, grain yield decreased as the seeding rate increased, but under the more favorable conditions in 2009 the reverse was true. Averaged over the seeding rates, grain yield was significantly increased in both W and S in both years; grain yield and yield components were higher in W; and S recorded the highest water use efficiency. The interaction between seeding rate and root pruning was not statistically significant. Leaf area index (LAI) and tiller density were higher as seeding rates increased whereas in W and S, increased LAI and decreased tillers significantly, but had no effect on fertile tillers. The rate of leaf photosynthesis was lower and root respiration was significantly higher at higher seeding rates, whereas in root pruning treatments, significantly higher leaf photosynthetic rate and lower root respiration were observed. Soil water contents were lower as seeding rate increased. A significant decrease in water use before stem elongation was observed in W, while S consumed less soil water than W and the control over the whole growing season. Post-heading accumulation of dry matter and its remobilization from vegetative parts to the grain was significantly greater at higher seeding rates. Post-heading accumulations of dry matter and grain yield were also significantly greater in W and S than the un-pruned plants, although pruning reduced both dry matter remobilization and its contribution to grain yield. The possibility of reducing the proliferation of roots to increase yields at higher seeding rates and conserving the soil water at different growing stages in water-limited environments is discussed.  相似文献   

3.
A generic agricultural drought index, called Agricultural Reference Index for Drought (ARID), was designed recently to quantify water stress for use in predicting crop yield loss from drought. This study evaluated ARID in terms of its ability to predict crop yields. Daily historical weather data and yields of cotton, maize, peanut and soybean were obtained for several locations and years in the south‐eastern USA. Daily values of ARID were computed for each location and converted to monthly average values. Using regression analyses of crop yields vs. monthly ARID values during the crop growing season, ARID‐yield relationships were developed for each crop. The ability of ARID to predict yield loss from drought was evaluated using the root mean square error (RMSE), the Willmott index and the modelling efficiency (ME). The ARID‐based yield models predicted relative yields with the RMSE values of 0.144, 0.087, 0.089 and 0.142 (kg ha?1 yield per kg ha?1 potential yield); the Willmott index values of 0.70, 0.92, 0.86 and 0.79; and the ME values of 0.33, 0.73, 0.60 and 0.49 for cotton, maize, peanut and soybean, respectively. These values indicated that the ARID‐based yield models can predict the yield loss from drought for these crops with reasonable accuracy.  相似文献   

4.
The effects of seeding rate (30, 60 and 90 seeds m?2), seeding date (14 January, 28 January and 12 February), seed weight (0.18 and 0.25 g seed?1), seeding depth (3 and 6 cm), and phosphorus fertilization rate (17.5, 35.0 and 52.5 kg P ha?1) and placement method (banded or broadcasted) on field pea (Pisum sativum L.) development and seed yields were investigated in irrigated field experiments conducted in northern Jordan in 2000 and 2001. Results and treatment responses were consistent in both years. Seeding rate, seeding date, seed weight and rate and method of phosphorus fertilization had significant effects on most traits measured; planting depth however did not affect any of the traits. Generally a positive correlation was observed between each factor and seed yield and yield components, with the exception of a negative correlation between seeding rate and yield components, and seeding date and yield and yield components. Increase in seeding rate from 30 to 90 seeds m?2, and increase in P fertilization from 17.5 to 52.5 kg ha?1 alone increased seed yields by 50 and 41 %, respectively. Each delay of 2 weeks for seeding from mid‐January resulted in reductions of 12 % in seed yields. Overall, the results revealed that a combination of early seeding (14 January), of large seeds at an high seeding rate (90 seeds m?2), with P fertilizer banding (52.5 kg P ha?1) maximize field pea yields in irrigated fields in semi‐arid Mediterranean environments. With such management pea seed yields can be as high as 2800 kg ha?1.  相似文献   

5.
The cup plant (Silphium perfoliatum L.) is discussed as an alternative energy crop for biogas production in Germany due to its ecological benefits over continuously grown maize. Moreover, a certain drought tolerance is assumed because of its intensive root growth and the dew water collection by the leaf cups, formed by fused leaf pairs. Therefore, the aim of this study was to estimate evapotranspiration (ET ), water‐use efficiency (WUE ) and the relevance of the leaf cups for the cup plant's water balance in a 2‐year field experiment. Parallel investigations were conducted for the two reference crops maize (high WUE ) and lucerne‐grass (deep and intensive rooting) under rainfed and irrigated conditions. Root system performance was assessed by measuring water depletion at various soil depths. Transpiration‐use efficiency (TUE ) was estimated using a model approach. Averaged over the 2 years, drought‐related above‐ground dry matter reduction was higher for the cup plant (33 %) than for the maize (18 %) and lucerne‐grass (14 %). The WUE of the cup plant (33 kg ha?1 mm?1) was significantly lower than for maize (50 kg ha?1 mm?1). The cup plant had a lower water uptake capacity than lucerne‐grass. Cup plant dry matter yields as high as those of maize will only be attainable at sites that are well supplied with water, be it through a large soil water reserve, groundwater connection, high rainfall or supplemental irrigation.  相似文献   

6.
Preplant‐applied, urea‐based fertilizer management in high‐residue, no‐till (NT) corn (Zea mays L.) is challenging because of potential N loss due to cool, wet conditions in the spring and dry conditions during the summer months. Field research evaluated the effects of polymer‐coated urea (PCU) application timing, placement and cropping system on urea release for corn and determined corn yield response to PCU on claypan soils following wheat (Triticum aestivum L.) cropping systems [reduced‐till corn following wheat, no‐till corn following wheat with double‐cropped (DC) soybean [Glycine max (L.) Merr.] and no‐till corn following wheat with a frost‐seeded red clover (FSC) (Trifolium pratense L.) cover crop]. Urea release from PCU was <35 % from fall through winter (November–January) and <20 % for early preplant (February–March) applications until 1 April. By 1 August, less urea was released in some instances from surface applications of PCU following FSC or DC soybean, but release was generally greater than in the absence of soil. No‐till corn following DC soybean or FSC had yields that were 1.01–1.32 Mg ha?1 greater when grown with PCU compared to urea at 168 kg N ha?1. Grain yields were similar within no‐till cropping systems with PCU, anhydrous ammonia and sidedressed urea ammonium nitrate (UAN) at 168 kg N ha?1. Farmers should recognize that high yields may not be obtained if PCU rates are reduced by 50 % (84 kg N ha?1) in high‐residue (DC soybean or FSC), no‐till production systems. Several N sources such as PCU, anhydrous ammonia and sidedressed UAN worked similarly in high‐residue, no‐till systems, although no differences between N sources were observed in a reduced‐tillage system.  相似文献   

7.
An experiment was conducted to investigate the influence of different levels of water deficit on yield and crop water requirement of soya beans in a sub‐humid environment (Southern Marmara region, Bursa, Turkey) in 2005 and 2006. One full‐irrigated treatment (T1), one non‐irrigated treatment (T5) and three different deficit irrigation (T2 = 25 % water deficit, T3 = 50 % water deficit, T4 = 75 % water deficit) treatments were applied to ‘Nova’ soya bean planted on a clay soil. Non‐irrigated and all deficit irrigation treatments significantly reduced biomass and seed yield and yield components. The full‐irrigated (T1) treatment had the highest yield (3760 kg ha?1), while the non‐irrigated (T5) treatment had the lowest yield (2069 kg ha?1), a 45.0 % seed yield reduction. T2, T3 and T4 deficit irrigation treatments produced 11.7–27.4 % less seed yield than the T1 treatment. Harvest index showed less and irregular variation among irrigation treatments. Both leaf area per plant and leaf area index were significantly reduced at all growth stages as amount of irrigation water was decreased. Evapotranspiration increased with increased amounts of irrigation water supplied. Our results indicate that higher amounts of irrigation resulted in higher seed yield, whereas water use efficiency and irrigation water use efficiency values decreased when irrigation amount increased.  相似文献   

8.
The rise of atmospheric CO2 concentration ([CO2]) affects stomatal conductance and thus transpiration and leaf temperature. We evaluated the effect of elevated [CO2] levels under different water supply on daily sap flow and canopy microclimate (air temperature (Tc) and vapour pressure deficit (VPD)) of maize. The crop was cultivated in circular field plots under ambient (AMB, 378 μmol mol?1) and elevated [CO2] (FACE, 550 μmol mol?1) using free‐air CO2 enrichment with sufficient water in 2007, while in 2008 a DRY semicircle received only half as much water as compared to the WET semicircle from mid of July. In 2007, sap flow was measured in WET simultaneously under AMB and FACE conditions and was significantly decreased by elevated [CO2]. In 2008, sap flow was measured in all four treatments but not simultaneously. Therefore, data were correlated with potential evaporation and the slopes were used to determine treatment effects. Drought reduced whole‐plant transpiration by 50 % and 37 % as compared to WET conditions under AMB and FACE, respectively. Moreover, CO2 enrichment did not affect sap flow under drought but decreased it under WET by 20 % averaged over both years. The saving of water in the period before the drought treatment resulted in a displacement of dry soil conditions under FACE as compared to AMB. Under WET, CO2 enrichment always increased Tc and VPD during the day. Under DRY, FACE plots were warmer and drier most of the time in August, but cooler and damper short after the start of drought in July and from the end of August onwards. Thus, the CO2 effect on transpiration under drought was variable and detectable rather easy by measuring canopy microclimate.  相似文献   

9.
Maize (Zea mays L.) is a very important crop in many of the irrigated areas of the Ebro Valley (NE Spain). Intensive pig (Sus scrofa domesticus) production is also an important economic activity in these areas, and the use of pig slurry (PS) as a fertiliser for maize is a common practise. From 2002 to 2005, we conducted a field trial with maize in which we compared the application of 0, 30 and 60 m3 ha−1 of PS combined with 0, 100 and 200 kg ha−1 of mineral N at sidedress. Yield, biomass and other related yield parameters differed from year to year and all of them were greatly influenced by soil NO3-N content before planting and by N (organic and/or mineral) fertilisation. All years average grain yield and biomass at maturity ranged from 9.3 and 18.9 Mg ha−1 (0 PS, 0 mineral N) to 14.4 and 29.6 Mg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. Grain and total N biomass uptake average of the studied period ranged from 101 and 155 kg ha−1 (0 PS, 0 mineral N) to 180 and 308 kg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. All years average soil NO3-N content before planting and after harvest were very high, and ranged from 138 and 75 kg ha−1 (0 PS, 0 mineral N) to 367 and 457 kg ha−1 (60 m3 ha−1 of PS, 200 kg ha−1of mineral N), respectively. The optimal N (organic and/or mineral) rate varied depending on the year and was influenced by the soil NO3-N content before planting. For this reason, soil NO3-N content before planting should be taken into account in order to improve N fertilisation recommendations. Moreover, the annual optimal N rates also gave the lowest soil NO3-N contents after harvest and the lowest N losses, as a consequence they also could be considered as the most environmentally friendly N rates.  相似文献   

10.
Despite exhaustive literature describing drought stress effects on photosynthesis in Gossypium hirsutum, the sensitivity of photosynthetic electron flow to water deficit is heavily debated. To address this, G. hirsutum plants were grown at a field site near Camilla, GA under contrasting irrigation regimes, and pre‐dawn water potential (ΨPD), stomatal conductance (gs), net photosynthesis (PN), actual quantum yield of photosystem II (ΦPSII) and electron transport rate (ETR) were measured at multiple times during the 2012 growing season. ΨPD values ranged from ?0.3 to ?1.1 MPa. Stomatal conductance exhibited a strong (r2 = 0.697), sigmoidal response to ΨPD, where gs was ≤0.1 mol m?2 s?1 at ΨPD values ≤ ?0.86 MPa. Neither ΦPSII (r2 = 0.015) nor ETR (r2 = 0.010) was affected by ΨPD, despite exceptionally low ΨPD values (?1.1 MPa) causing a 71.7 % decline in PN relative to values predicted for well‐watered G. hirsutum leaves at ΨPD = ?0.3 MPa. Further, PN was strongly influenced by gs, whereas ETR and ΦPSII were not. We conclude that photosynthetic electron flow through photosystem II is insensitive to water deficit in field‐grown G. hirsutum.  相似文献   

11.
Some fungal species have been shown to improve plant growth under drought conditions and to increase plant phosphorus (P) uptake from the soil. How moisture limitation, P availability and fungal inoculation interact to affect plant physiology and growth is, however, poorly understood. Here, we studied the combined effects of fungal (arbuscular mycorrhizal fungi (AMF) or Penicillium spp.) inoculations and phosphorus (P) fertilization (0, 45 and 90 kg ha?1) on the net rate of photosynthesis, water‐use efficiency, P uptake and growth of spring wheat (Triticum aestivum var. Superb) under field conditions at two locations (Castor and Vegreville) in Alberta, Canada. Both fungal inoculation and P application increased the rate of photosynthesis. Under the same P level, AMF inoculation had a greater positive effect on the rate of photosynthesis than Penicillium inoculation. The AMF inoculation increased the instantaneous water‐use efficiency (WUEi) of plants at Castor, but not at Vegreville. Leaf carbon isotope discrimination (CID, Δ13C) increased with the rate of P application but was not affected by fungal inoculations. Phosphorus concentrations of stem and seed increased with both fungal inoculation and P application irrespective of location, with AMF inoculation showing the largest effects. The interaction between P addition and fungal inoculation was significant for stem P concentration in Vegreville. Both fungal inoculation and P application increased the leaf area index (LAI), biomass production and grain yield at both locations. Under the same P level, AMF inoculation had a greater positive effect on LAI, biomass production and grain yields than Penicillium inoculation. Morphological characters such as spike length and kernels/spike were also improved by fungal inoculation and P application at both locations. We conclude that the studied sites were deficient in P availability, and both fungal inoculation and P application improved P uptake and crop productivity, while the effect of fungal inoculation on water‐use efficiency was site specific.  相似文献   

12.
Annual Medicago as a Smother Crop in Soybean   总被引:2,自引:0,他引:2  
Use of conservation tillage and narrow row spacing in soybean [Glycine max (L.) Merr.] production has led to increased use of herbicides for weed control. Some producers are seeking alternative weed control methods, such as smother crops, that would reduce dependence on chemical weed control. A successful smother crop must compete strongly with weeds but minimally with the crop. In four environments, we intercropped three annual Medicago spp. (medics) with soybean to test their utility as a smother crop for weed control. Annual medics were intercropped with soybean at rates of 0, 85, 258, or 775 seeds m?2, and the intercrops were grown with and without weed control. Increasing medic seeding rate decreased weed yields but also reduced soybean herbage and grain yields. For the weed‐controlled treatment, average soybean grain yields declined 7 kg ha?1 for every 10 seeds m?2 increase in medic seeding rate. Soybean grain yield was lower when grown with Medicago scutellata L. cv. Sava than when grown with Medicago polymorpha L. cv. Santiago or Medicago lupilina L. cv. George. Soybean grain yield was negatively related (r=?81) to medic herbage production. In the autumn following soybean harvest, medic residue ranged from 200 to 3700 kg ha?1 depending on the location and seeding rate. Medics provided residue for soil protection, suppressed weeds, but also reduced soybean yields.  相似文献   

13.
Growth and yield of wheat are affected by environmental conditions and can be regulated by sowing time and seeding rate. In this study, three sowing times [winter sowing (first week of September), freezing sowing (last week of October) and spring sowing (last week of April)] at seven seeding rates (325, 375, 425, 475, 525, 575 and 625 seeds m?2) were investigated during the 2002–03 and 2003–04 seasons, in Erzurum (Turkey) dryland conditions, using Kirik facultative wheat. A split‐plot design was used, with sowing times as main plots and seeding rates randomized as subplots. There was a significant year × sowing time interaction for grain yield and kernels per spike. Winter‐sown wheat produced a significantly higher leaf area index, leaf area duration, spikes per square metre, kernel weight and grain yield than freezing‐ and spring‐sown wheat. The optimum time of sowing was winter for the facultative cv. Kirik. Grain yields at freezing and spring sowing were low, which was largely the result of hastened crop development and high temperatures during and after anthesis. Increasing seeding rate up to 525 seeds m?2 increased the spikes per square metre at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as sowing time in maximizing grain yield. Changes in spikes per square metre were the major contributors to the grain‐yield differences observed among sowing times and seeding rates. Yield increases from higher seeding rates were greater at freezing and spring sowing. We recommended that a seeding rate of 525 seeds m?2 be chosen for winter sowing, and 575 seeds m?2 for freezing and spring sowing.  相似文献   

14.
Breeding has developed better yielding maize hybrids for low N environments, which also have delayed leaf senescence (‘stay green’ trait, SG). Here, we studied whether the SG trait can further improve yield of modern hybrids under N‐limiting conditions. In two field experiments, four maize hybrids with different senescence behaviour were grown under three N fertilization levels, from 0 to 200 kg N ha?1 (N0, N100 and N200). After silking, hybrids differed for senescence depending on the canopy layer (P < 0.05): the SG AX878 only delayed senescence at the mid and upper canopy layers while the SG NK880 delayed senescence of all layers. Across N doses, higher yields were achieved by both SG hybrids, AX878 and NK880 (P < 0.05) but yield was not only determined by senescence behaviour. Kernel weight (KW) response to N availability was larger for SGs than for their non‐‘stay green’ counterparts. Delayed senescence in SG hybrids was not related to higher post‐silking N uptake but to higher (P < 0.05) %N in leaves and lower (P < 0.05) %N in kernels at harvest (below the critical 1.1 % under N deficiency). Across N levels, KW positively related to N content per kernel, with a steeper slope (P < 0.05) for the SG hybrids. Taken together, our results suggest that a condition where N limits kernel growth, in a scenario of saturating C availability, may be common to stay green genotypes of maize.  相似文献   

15.
A field study was conducted to determine the effect of a combination of the plastic‐covered ridge and furrow rainwater harvesting (PRFRH) with different mulching materials, namely, 0.08‐mm‐thick plastic film (T1), 10‐cm‐thick corn straw (T2), 8 % biodegradable film (T3), liquid film (T4), bare furrow (T5) and conventional flat (CF), on corn production, soil water storage and water use efficiency (WUE) in the subhumid areas prone to drought of China (SAPDC). The T1–T5 plots at 0–100 cm depth had higher (P < 0.05) soil water storage than CF, while at 100–200 cm soil layer there was no difference (P > 0.05) among treatments. The T1–T4 plots produced 209–1 107 kg ha?1 more grain yields than the T5 plots. Meanwhile, almost all treatments had WUE over 2 kg m?3. The order of WUE increase among different mulch treatments was as follows: T3 > T1 > T2 > T4. In the case of environmental and economic feasibility, a combination of the PRFRH system with biodegradable film and straw mulches would be an option with high potential to increase crop sustainability in dry land farming systems and can be adopted in many areas without irrigation capability.  相似文献   

16.
Full‐grown Artemisia annua plants were subjected to chemical and physical stress conditions, and the effect of these on the concentration and chemical composition of essential oil components (EOC) in the leaves was studied. The chemical stress treatments were performed by foliar application of NaCl, H2O2, salicylic acid and chitosan oligosaccharide (COS). The EOC of the leaves were extracted with n‐hexane and identified and quantified by GC–MS and GC–FID, respectively. Approximately 96 % of EOC in the extracts were identified and quantified of which β‐pinene, camphene, germacrene D, camphor, coumarin and dihydro‐epi‐deoxyarteannuin B were the major EOC accounting for about 75 % of the total content of EOC in the extracts. The physical stress treatment, sandblasting of the plants resulted in a significant enhancement in the content of α‐pinene, camphene, coumarin and dihydro‐epi‐deoxyarteannuin B. The total yield of identified EOC in non‐treated plants (control) was 86.2 ± 13.8 μg g?1 fresh weight (FW) compared with 104.0 ± 9.1 μg g?1 FW in sandblasted plants. The chemical stress treatments did not affect the composition of EOC significantly. The results indicate that chemical stress treatments do not affect the concentration and composition of EOC in full‐grown A. annua plants to the same extent as physical stress treatment by sandblasting.  相似文献   

17.
Waterlogging, if occurring within the stem elongation period (SE), is particularly critical for yield determination. We quantified for the first time the effect of waterlogging duration during SE on yield and studied whether the effects were only direct on resource capture or whether there were feed‐forward effects as well. We grew wheat (cv. Soissons) outdoors in long tubes (1.25 m deep) forming a normal canopy and imposed different treatments in SE to finish simultaneously around anthesis (0, 4, 8, 12, 16, 20 and 24 days) plus two complementary treatments (8 and 16 days) starting 10 days after the onset of SE. Yield was reduced linearly with the duration of waterlogging c. 2 % dwaterlogging?1. Treatments mainly affected pre‐anthesis spike growth reducing the number of fertile florets and grains, not affecting fruiting efficiency. The magnitude of grain number loss was inversely proportional to the hierarchy of the spikes and spikelets. Grain weight was more marginally reduced, likely through the effects on the size of the ovaries of the developing florets. This reveals a direct effect of waterlogging on the capture of resources with no major feed‐forward effects. Losses were in agreement with those from other studies for particular durations of waterlogging.  相似文献   

18.
Translocations of the short arm of rye (Secale cereale L.) chromosome 1 (1RS) in wheat (Triticum aestivum L. cv. Pavon 76) are known to increase root biomass. Such an increase enhances water and nutrient uptake and may improve grain yield. Two greenhouse experiments and a field experiment were carried out at the University of California, Riverside, in 2012 and 2013 under well‐watered and terminal drought treatments to evaluate phenotypic characters associated with varying dosages of 1RS, including grain yield. The genotypes used were cultivar Pavon 76 (R0), Pavon 76/Pavon1RS.1AL (F1 hybrid) with a single dosage of 1RS (R1A), Pavon 1RS.1AL with two dosages of 1RS (R2A), Pavon 1RS.1DL (R2D) also with two dosages of 1RS and Pavon 1RS.1AL‐1RS.1DL (R4AD) with four dosages of 1RS. There was a significant positive correlation between number of dosages of 1RS and root biomass. However, no correlation was found between root biomass and grain yield per plant. Drought in the field experiment reduced grain yield significantly. Under well‐watered field conditions, grain yield of R2A (215.9 g plant?1) was significantly greater than those of R2D (191.8 g plant?1) and R4AD (161.7 g plant?1). Also, grain yield of R4AD was significantly less than those of F1, Pavon 76 and R2D under well‐watered conditions. Under drought field conditions, no significant differences were found among the genotypes for grain yield was found between F1 (14.7 g plant?1) and R4AD (12.4 g plant?1). Harvest index was significantly greater in well‐watered (44.2 %) than in drought (34.6 %) field conditions. On average, genotypes F1 (42.3 %) and R2A (40.6 %) had higher harvest index than R2D (38.3 %) and R4AD (35.5 %) in the field. Also, Pavon 76 (40.2) and R2D (38.3) had higher harvest index than R4AD. Drought tolerance was lowest for R4AD due to its relatively lower grain yield potential. In general, Pavon 1RS.1AL carrying two dosages of 1RS showed higher grain yield under wet treatments. Pavon 1RS.1AL‐1RS.1DL carrying four dosages of 1RS produced the largest shoot and root biomasses, but the least grain yield.  相似文献   

19.
The main task of this research was to evaluate canopy temperature and Crop Water Stress Index (CWSI) by assessing genotype variability of maize performance for different water regimes. To that end, three hundred tropical and subtropical maize hybrids with different phenology in terms of date of anthesis were evaluated. The influence of phenology on the change in canopy temperatures and CWSI was not equal during the three dates of measurement. At the end of vegetative growth (82 days after sowing, DAS) and at the blister stage (DAS 97), a high significant difference in temperatures and CWSI (P < 0.001) were obtained between the early‐ and late‐maturity genotypes. During anthesis (DAS 89), phenology had a significant effect (P < 0.01) only for the well‐watered genotypes, while under water‐stress conditions, no differences were found between early and late genotypes in terms of canopy temperature and CWSI. High significant differences (P < 0.001) in stomatal conductance (gs) between early and late genotypes for different treatments were observed. A relationship (R2 = 0.62) between gs and canopy temperature was obtained. Under a water‐stress canopy, temperature was measured at anthesis, which was negatively correlated with grain yield of the early (r = ?0.55)‐ and late (r = ?0.46)‐maturity genotypes in the water‐stressed condition.  相似文献   

20.
Quinoa is a native Andean crop for domestic consumption and market sale, widely investigated due to its nutritional composition and gluten‐free seeds. Leaf water potential (Ψleaf) and its components and stomatal conductance (gs) of quinoa, cultivar Titicaca, were investigated in Southern Italy, in field trials (2009 and 2010). This alternative crop was subjected to irrigation treatments, with the restitution of 100 %, 50 % and 25 % of the water necessary to replenish field capacity, with well water (100 W, 50 W, 25 W) and saline water (100 WS, 50 WS, 25 WS) with an electrical conductivity (ECw) of 22 dS m?1. As water and salt stress developed and Ψleaf decreased, the leaf osmotic potential (Ψπ) declined (below ?2.05 MPa) to maintain turgor. Stomatal conductance decreased with the reduction in Ψleaf (with a steep drop at Ψleaf between ?0.8 and 1.2 MPa) and Ψπ (with a steep drop at Ψπ between ?1.2 and ?1.4 MPa). Salt and drought stress, in both years, did not affect markedly the relationship between water potential components, RWC and gs. Leaf water potentials and gs were inversely related to water limitation and soil salinity experimentally imposed, showing exponential (Ψleaf and turgor pressure, Ψp, vs. gs) or linear (Ψleaf and Ψp vs. SWC) functions. At the end of the experiment, salt‐irrigated plants showed a severe drop in Ψleaf (below ?2 MPa), resulting in stomatal closure through interactive effects of soil water availability and salt excess to control the loss of turgor in leaves. The effects of salinity and drought resulted in strict dependencies between RWC and water potential components, showing that regulating cellular water deficit and volume is a powerful mechanism for conserving cellular hydration under stress, resulting in osmotic adjustment at turgor loss. The extent of osmotic adjustment associated with drought was not reflected in Ψπ at full turgor. As soil was drying, the association between Ψleaf and SWC reflected the ability of quinoa to explore soil volume to continue extracting available water from the soil. However, leaf ABA content did not vary under concomitant salinity and drought stress conditions in 2009, while differing between 100 W and 100 WS in 2010. Quinoa showed good resistance to water and salt stress through stomatal responses and osmotic adjustments that played a role in the maintenance of a leaf turgor favourable to plant growth and preserved crop yield in cropping systems similar to those of Southern Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号