首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds.  相似文献   

2.
The evaluation of the bioaccessibility of almond nutrients is incomplete. However, it may have implications for the prevention and management of obesity and cardiovascular disease. This study quantified the release of lipid, protein, and vitamin E from almonds during digestion and determined the role played by cell walls in the bioaccessibility of intracellular nutrients. Natural almonds (NA), blanched almonds (BA), finely ground almonds (FG), and defatted finely ground almonds (DG) were digested in vitro under simulated gastric and gastric followed by duodenal conditions. FG were the most digestible with 39, 45, and 44% of lipid, vitamin E, and protein released after duodenal digestion, respectively. Consistent with longer residence time in the gut, preliminary in vivo studies showed higher percentages of nutrient release, and microscopic examination of digested almond tissue demonstrated cell wall swelling. Bioaccessibility is improved by increased residence time in the gut and is regulated by almond cell walls.  相似文献   

3.
Supercritical fluid carbon dioxide (SC-CO2), when used with an extraction enhancer, comprises a supercritical fluid extraction (SFE) system for extraction of pesticides and matrix components from fatty and nonfatty foods. After being mixed with the enhancer, samples ranging from 95% water to pure lipophilic oils can be extracted efficiently with SC-CO2. This extraction technique yields analyte recoveries in excess of 85% for over 30 types of pesticides at incurred levels ranging from 0.005 to 2 ppm in such diverse matrixes as carrots, lettuce, peanut butter, hamburger, and fortified butter fat and fortified potatoes. SC-CO2 provides a solvent medium that is nontoxic, nonflammable, and inexpensive while also eliminating the use and disposal of potentially carcinogenic organic solvents.  相似文献   

4.
This study investigated the supercritical carbon dioxide (SC-CO(2)) extraction of fat from ground beef and the effects of several factors on the gravimetric determination of fat. The use of ethanol modifier with the SC-CO(2) was not necessary for efficient fat extraction; however, the ethanol did increase the coextraction of water. This coextraction of water caused a significant overestimation of gravimetric fat. Oven-drying ground beef samples prior to extraction inhibited the subsequent extraction of fat, whereas oven-drying the extract after collection decreased the subsequent gas chromatographic fatty acid methyl ester (GC-FAME) fat determination. None of the drying agents tested were able to completely prevent the coextraction of water, and silica gel and molecular sieves inhibited the complete extraction of fat. Measurements of collection vial mass indicated that CO(2) extraction/collection causes an initial increase in mass due to the density of CO(2) (relative to displaced air) followed by a decrease in vial mass due to the removal of adsorbed water from the collection vial. Microwave-drying of the empty collection vials removes approximately 3 mg of adsorbed water, approximately 15-20 min is required for readsorption of the displaced water. For collection vials containing collected fat, microwave-drying effectively removed coextracted water, and the vials reached equilibration after approximately 10-15 min. Silanizing collection vials did not significantly affect weight loss during microwave-drying. SC-CO(2) can be used to accurately determine fat gravimetrically for ground beef, and the presented method can also be followed by GC-FAME analysis to provide specific fatty acid information as well.  相似文献   

5.
The volatile oil of Elettaria cardamomum (L.) Maton seeds was obtained by supercritical CO(2) extraction (SC-CO(2)). The effect of the extraction conditions on the yield and composition of the resulting cardamom volatile oil was examined by testing two pressure values, 9.0 and 11.0 MPa; two temperatures, 40 and 50 degrees C; two flow rate values, 0.6 and 1.2 kg/h; and two particles size values, 250-425 and >850 microm. The extraction conditions that gave the highest yield, Y (grams of extract per gram of seeds), of 5.5%, were as follows: pressure, 9.0 MPa; temperature, 40 degrees C; carbon dioxide flow, phi = 1.2 kg/h; and particles sizes in the range of 250-425 microm. Waxes, recovered as traces, were entrapped in the first separator set at 9.0 MPa and -10 degrees C. The oil was recovered in the second separator working at 1.5 MPa and 10 degrees C. The main components were as follows: alpha-terpinyl acetate, 42.3%; 1,8-cineole, 21.4%; linalyl acetate, 8.2%; limonene, 5.6%; and linalool, 5.4%. A comparison with the hydrodistilled oil, obtained at a yield of 5.0%, did not reveal any consistent difference. In contrast, the extract obtained using hexane, Y = 7.6%, showed strong composition differences. Indeed, the volatile fraction of the extract was made up mainly of the following: limonene, 36.4%; 1,8-cineole, 23.5%; terpinolene, 8.6%; and myrcene, 6.6%.  相似文献   

6.
The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond ( Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0 A and belong to the tetragonal space group P4(1)22, with unit cell parameters of a = b = 150.912 A, c = 165.248 A. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.  相似文献   

7.
Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.  相似文献   

8.
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.  相似文献   

9.
Orange oil is composed largely of terpene hydrocarbons but is a source of flavor and fragrance compounds (oxygenated) that are present in low concentrations. To increase the ratio of oxygenated compounds to terpene hydrocarbons, orange oil was partially fractionated by adsorption of the oxygenated compounds onto porous silica gel, with full utilization of its adsorbent capacity, and then further purified by desorption into supercritical carbon dioxide. The desorption of 24 compounds was monitored by GC and GC-MS. Adsorption alone removed three-fourths of the terpene hydrocarbons, and fractional extraction by supercritical carbon dioxide (SC-CO(2)) improved the separation further. Response surface methodology was used in the experimental design, and regression analysis was used to determine the effects of process variables. Extraction at low temperatures and flow rates improved separation by SC-CO(2). Decanal was concentrated to 20 times that of the feed oil by using SC-CO(2) at 13.1 MPa, 35 degrees C, and 2 kg/h. The systems were operating at close to equilibrium conditions because of the fine dispersal of the oils and the excellent mass transfer properties of supercritical carbon dioxide.  相似文献   

10.
Oil content and fatty acid composition were determined for two years in the kernel oil of eight cultivars and 47 advanced self-compatible almond genotypes developed in an almond breeding program. Considerable variation between genotypes was found for all parameters. Oil content ranged from 48% to 67% of the total kernel dry weight but was consistent over the two years. Fatty acid composition was also very variable, with significant differences between genotypes, even in genotypes of the same progeny. Oleic acid, ranging from 63% to 78%, and linoleic acid, ranging from 12% to 27%, were the major fatty acids, showing higher values in some selections than in their parents. The large variability observed for all fatty acids and the presence of selections with higher oil and fatty acid contents than the commercial cultivars represents a very promising base to obtain new almond cultivars with oil of higher quality, satisfying the industrial and consumer sectors.  相似文献   

11.
Single cells prepared from autoclaved soybeans and cellulase treatment of the cells were effective in digesting the cell walls of and extracting the oil from soybeans. The first cell wall of the soybean single cell was completely removed using cellulases; the thin and transparent second cell wall of the cell was swollen. Oil in the cell formed spherical or hemispherical oil drops, and oil leaking from the oil bodies was observed. The oil was almost retained within the second cell wall. Water-extractable substances were obtained at approximately >60% of the weight. Flotation of oil drops by centrifugation was easily done. Ambient n-hexane extraction was also possible; however, residual oil remained in the oil bodies. Protease or peptidase digested the structure of the oil bodies; however, separation of the oil and the hydrolysates was impossible. The oil from the oil bodies was obtained effectively (>85%) by pressing the single cells and/or cellulase-treated single cells.  相似文献   

12.
Cell wall polysaccharides of 'Scarlet Warren' winter squash ( Cucurbita maxima ) were investigated before and after thermal processing. Linkage analysis of polysaccharides was done by gas chromatography coupled to mass spectrometry (GC-MS). The linkage analysis showed the cell wall polysaccharide compositions of raw and cooked squash were similar. The total pectic polysaccharides (galacturonan, rhamnogalacturonan, arabinan, and arabinogalactan) contents of the cell walls of both raw and cooked squash were 39 mol %. The amounts of pectic polysaccharides and xyloglucan in the cell walls of squash showed little alteration on heating. The cellulose content of the raw and cooked cell walls was relatively high at 47 mol %, whereas the xyloglucan content was low at 4 mol %. Solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy techniques were used to examine the molecular motion of the polysaccharides in the cell walls. The mobility of highly flexible galactan depends on the water content of the sample, but no difference was seen between raw and cooked samples. Likewise, the mobility of semimobile pectic polysaccharides was apparently unaltered by cooking. No change was detected in the rigid cellulose microfibrils on cooking.  相似文献   

13.
Caneberries (Rubus spp. L.) are grown primarily throughout the Pacific Northwestern United States and Canada. Processing of caneberry fruit typically removes the seed, and the development of a value-added use of seeds could expand the market for caneberries and the profit margins for growers. An initial step toward the use of the seeds is a characterization of seed and oil. Our investigation has described compositional characteristics for seeds of five commonly grown caneberry species: red raspberry, black raspberry, boysenberry, Marion blackberry, and evergreen blackberry. Seeds from all five species had 6-7% protein and 11-18% oil. The oils contained 53-63% linoleic acid, 15-31% linolenic acid, and 3-8% saturated fatty acids. The two smaller seeded raspberry species had higher percentages of oil, the lowest amounts of saturated fatty acid, and the highest amounts of linolenic acid. Antioxidant capacities were detected both for whole seeds and for cold-pressed oils but did not correlate to total phenolics or tocopherols. Ellagitannins and free ellagic acid were the main phenolics detected in all five caneberry species and were approximately 3-fold more abundant in the blackberries and the boysenberry than in the raspberries.  相似文献   

14.
Supercritical carbon dioxide extraction and fractionation of fennel oil   总被引:3,自引:0,他引:3  
Ground fennel seeds were extracted with supercritical carbon dioxide. Small-scale subsequent extractions of the same sample showed that the composition of volatile compounds was changed with the extension of extraction time and only principal volatile components (limonene, fenchone, methylchavicol, and anethole) were present in the last-extracted sample. Fennel oil was successfully fractionated into the essential oil rich and fatty oil rich products in pilot-scale apparatus using two separators in series. Designed experiments were carried out to map the effects of pressure and temperature in the first separator on the yields and compositions of the products. The minimum level of the total undesired components in both essential oil rich and fatty oil rich products appeared at a pressure of 80-84 bar and a temperature of 31-35 degrees C in the first separator. Supercritical CO(2) extraction of fennel seeds resulted in higher yield (10.0%) than steam distillation (3.0%), almost the same yield as hexane extraction (10.6%), and lower yield than alcohol extraction (15.4%). Analysis of the volatile compounds revealed the significant difference of the composition in distilled oil and oleoresins prepared by CO(2) and solvent extractions. Sensory evaluation showed that the CO(2) extraction product and distilled oil were more intense in odor and taste than alcohol and hexane extracts.  相似文献   

15.
This study examines cosolvent-modified supercritical carbon dioxide (SC-CO2) to remove caffeine from and to retain catechins in green tea powder. The response surface method was adopted to determine the optimal operation conditions in terms of the extraction efficiencies and concentration factors of caffeine and catechins during the extractions. When SC-CO2 was used at 333 K and 300 bar, 91.5% of the caffeine was removed and 80.8% of catechins were retained in the tea: 3600 g of carbon dioxide was used in the extraction of 4 g of tea soaked with 1 g of water. Under the same extraction conditions, 10 g of water was added to <800 g of carbon dioxide in an extraction that completely removed caffeine (that is, the caffeine extraction efficiency was 100%). The optimal result as predicted by three-factor response surface methodology and supported by experimental data was that in 1.5 h of extraction, 640 g of carbon dioxide at 323 K and 275 bar with the addition of 6 g of water extracted 71.9% of the caffeine while leaving 67.8% of the catechins in 8 g of tea. Experimental data indicated that supercritical carbon dioxide decaffeination increased the concentrations of caffeine in the SC-CO2 extracts at 353 K.  相似文献   

16.
Lycopene and beta-carotene were extracted from tomato paste waste using supercritical carbon dioxide (SC-CO(2)). To optimize supercritical fluid extraction (SFE) results for the isolation of lycopene and beta-carotene, a factorial designed experiment was conducted. The factors assessed were the temperature of the extractor (35, 45, 55, and 65 degrees C), the pressure of the extraction fluid (200, 250, and 300 bar), addition of cosolvent (5, 10, and 15% ethanol), extraction time (1, 2, and 3 h), and CO(2) flow rate (2, 4, and 8 kg/h). The total amounts of lycopene and beta-carotene in the tomato paste waste, extracts, and residues were determined by HPLC. A maximum of 53.93% of lycopene was extracted by SC-CO(2) in 2 h (CO(2) flow rate = 4 kg/h) at 55 degrees C and 300 bar, with the addition of 5% ethanol as a cosolvent. Half of the initially present beta-carotene was extracted in 2 h (flow rate = 4 kg/h), at 65 degrees C and 300 bar, also with the addition of 5% ethanol.  相似文献   

17.
Sicklepod (Senna obtusifolia) is a leguminous plant that infests soybean fields in the southeastern United States. Its seeds contain a variety of toxic, highly colored compounds, mainly anthraquinones together with a small amount of fat. These compounds contaminate and lower the quality of soybean oil when inadequately cleaned soybean seed from this area is processed. The sorting of sicklepod seed from a soybean harvest is an additional economic burden on the farmer beyond the cost of proper disposal of the weed seed to avoid worsening field infestation. Fortunately, sicklepod seed also contains substantial amounts of carbohydrates and proteins. These edible components when freed from anthraquinones have a market in pet food as well as potential in human foods because of the high galactomannan ratio of the polysaccharides. Sicklepod seed was dehulled, and the ground endosperm was defatted, followed by sequential solvent extraction of the defatted seed meal to isolate the anthraquinones, carbohydrates, and protein components into their respective classes. Each class of isolate was spectroscopically identified.  相似文献   

18.
Antioxidant activities of extracts derived from sesame seed by supercritical carbon dioxide (SC-CO(2)) extraction and by n-hexane were determined using alpha,alpha-diphenyl-beta-picylhydrazyl (DPPH) radical scavenging and linoleic acid system methods. The highest extracted yield was given at 35 degrees C, 40 MPa, and a CO(2) flow rate of 2.5 mL min(-1) by an orthogonal experiment. The yields of extracts increased with increasing pressure, and yields at 40 and 30 MPa were higher than that by solvent extraction at 46.50%. Results from the linoleic acid system showed that the antioxidant activity follows the order: extract at 35 degrees C, 20 MPa > BHT > extract at 55 degrees C, 40 MPa > extract at 55 degrees C, 30 MPa > Trolox > solvent extraction > alpha-tocopherol. The SC-CO(2) extracts exhibited significantly higher antioxidant activities comparable to that by n-hexane extraction. The extracts at 30 MPa presented the highest antioxidant activities assessed in the DPPH method. At 20 MPa, the EC(50) increased with temperature, which indicated that the antioxidant activity was decreased in a temperature-dependent manner. The significant differences of antioxidant activities were found between the extracts by SC-CO(2) extraction and n-hexane. However, no significant differences were exhibited among the extracts by SC-CO(2) extraction. The vitamin E concentrations were also significantly higher in SC-CO(2) extracts than in n-hexane extracts, and its concentrations in extracts corresponded with the antioxidant activity of extracts.  相似文献   

19.
Rosemary (Rosmarinus officinalis) leaves possess a variety of bioactivities. Previous studies have shown that the extract of rosemary leaves from supercritical fluid extraction inhibits the expression of inflammatory mediators with apparent dose-dependent responses. In this study, three different extraction conditions (5000 psi at 40, 60, and 80 °C) of supercritical carbon dioxide (SC-CO(2)) toward the extraction of antioxidants from rosemary were investigated. Furthermore, simultaneous comparison of the anti-inflammatory properties between rosemary extract prepared from SC-CO(2) under optimal conditions (5,000 psi and 80 °C) and its purified carnosic acid (CA) using lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophage cells was also presented. Results showed that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner. The five major compounds of verbenone, cirsimaritin, salvigenin, carnosol, and CA existing in the SC-CO(2) extract were isolated by semipreparative HPLC and identified by HPLC-MS/MS analysis. CA was the most abundant recorded compound and the most important photochemical with an anti-inflammatory effect with an IC(50) of 22.5 μM or 7.47 μg/mL presented to the best inhibitory activity on NO production better than that of the 14.50 μg/mL dosage prepared from the SC-CO(2) extract. Nevertheless, the effective inhibition of LPS-induced NF-κB signaling in RAW 264.7 cells from the SC-CO(2) extract extends the potential application of nutraceutical formulation for the prevention of inflammatory diseases.  相似文献   

20.
Dynamic extraction of carotenoids from a marine strain of Synechococcus sp. (Cyanophyceae) with supercritical CO2 (SC-CO2) was investigated with regard to operation pressure and temperature effects on extraction efficiency. Extraction yield (milligrams of pigment per gram of dry weight) for SC-CO2) was compared with the extraction yield for dimethylformamide (DMF). Carotenoids extracted with SC-CO2 were beta-carotene (Ct), zeaxanthin (Z), beta-cryptoxanthin (Cr), and equinenone; chlorophyll a was poorly extracted, whereas myxoxanthophyll, another major carotenoid, was not extracted under any experimental condition. The highest relative yield, which is defined here as y(r) = [(mg of pigment(SC-CO2)/mg of pigment(DMF))] x 100, was 76.1 +/- 8.6% for Ct, but it rose to 87.0 +/- 3.4% when 15% ethanol was used as cosolvent. The pressure effect on y(r) was found to be significant (p < 0.05) for both Cr and Z, along with total carotenoids, whereas the effect of square T (TT) was significant for only Ct. From empirical correlations, pairwise pressure (bar) and temperature (degrees C), respectively, for optimal extraction were determined to be (358, 50) for Ct, (454, 59) for Cr, and (500, 60) for Z. Cell disruption by sonication or detergent treatment of the biomass did not improve the extraction efficiency. Matrix structure together with material state could explain the low carotenoid extraction yield obtained with SC-CO2 as compared to DMF in Synechococcus sp. However, the process can be applied to selective extraction of different carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号