首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Tomato accessions (Lycopersicon sp.), along with commercial cultivars and breeding lines were grown in a field infested with the brown root rot (BRR) organism, Pyrenochaeta lycopersici and evaluated for resistance. Three L. esculentum Mill. accessions, P.I. 260397, P.I. 262906 and P.I. 203231, were resistant and were used as male parents in crosses designed to transfer resistance to tomatoes of fresh market type. Through analysis of parental generations and F1 and F2 progenies from three crosses the heritability of resistance in the broad sense was estimated to range from 25 to 43 percent. The minimum number of genes influencing resistance was estimated to be from 4 to 8.Florida Agricultural Experiment Stations Journal Series Paper no. 317.  相似文献   

2.
M. K. Banerjee  Kalloo 《Euphytica》1987,36(2):581-584
Summary Inheritance of resistance to tomato leaf curl virus (TLCV) was studied in the progenies derived from interspecific crosses between TLCV resistant Lycopersicon hirsutum f. glabratum line B 6013 and five susceptible cultivars (HS 101, HS 102, HS 110, Pusa Ruby and Punjab Chhuhara) of L. esculentum. P1, P2, F1, F2, B1 and B2 progenies of the five crosses were artificially inoculated with local strains of TLCV by means of the vector whitefly, Bemisia tabaci (Genn.). and the disease reaction was studied in all the crosses. Reaction of parents, F1, F2 and backcrosses suggests that resistance derived from L. hirsutum f. glabratum B 6013 is based on two epistatic genes, one from the wild parent and one from the cultivated one, resulting in a 13:3 segragation in the F2.  相似文献   

3.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

4.
Fusarium root rot (FRR) is a major disease of common bean worldwide. Knowledge of the inheritance of resistance to FRR would be important in devising strategies to breed resistant varieties. Therefore, a 12 × 12 full diallel mating scheme with reciprocal crosses was performed to generate 132 F1 progenies, which were then advanced to the F3. The progenies were evaluated for resistance to FRR under green house conditions in Uganda. General combining ability (GCA) effects were highly significant (P ≤ 0.01) for disease scores. Specific combining ability effects were not significant (P > 0.05) in the F1, but were highly significant (P < 0.01) in the F3 generation. These results indicate that resistance to FRR was governed by genes with additive effects in combination with genes with non-additive effects. Reciprocal differences were also significant (P = 0.01) at F1 and F3, primarily reflecting a large influence of maternal effects in both these generations. In fact, susceptible parents did not differ significantly (P > 0.05) for disease scores when used as paternal parents in the F3, but differed strongly as maternal parents (P = 0.0002). Generally, the progenies were distinctly more resistant when the resistant parent was used as the female in crosses, especially as observed in the F3. The maternal effects were strong in the F3 generation, suggesting a complex form of cytoplasmic–genetic interaction. The non-maternal reciprocal effects in the F3 were significant (P < 0.05) in both the resistant × resistant diallel, and in the resistant × susceptible crosses. Mid-parent heterosis (MPH) occurred in most crosses, with average heterosis approximately equal in each of the three generations, indicating that epistasis was probably more influential than dominance of individual genes. Gene-number formulas indicated that several genes were involved in resistant × susceptible crosses. Among resistant × resistant crosses, many produced continuous distributions of F1 progeny scores, suggesting polygenic inheritance, while bi-modal distributions were characteristic of the F3 distributions, and fit expected ratios for two or three loci segregating in each cross. Dominant forms of epistasis favoring resistance were strongly indicated. Parent–offspring heritability estimates were moderate. Overall, the results indicate that resistant parents contain a number of different resistance genes that can be combined with the expectation of producing strong and durable resistance. The lines MLB-49-89A, MLB-48-89, RWR719 and Vuninkingi, with large and negative GCA effects, contributed high levels of resistance in crosses and would be recommended for use in breeding programs.  相似文献   

5.
Summary The resistance sources among various test cultivars of urdbean to Colletotrichum truncatum, a leaf spotting pathogen, were identified and genetics of resistance was worked out by studying F1, F2 and F3 generations of crosses between resistant cultivars and the susceptible cv. Kulu 4 and of those among the resistant parents. The resistance was found to be controlled by single dominant genes and the resistance genes were non-allelic.  相似文献   

6.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

7.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

8.
The mode of inheritance and allelic relationships among genes conferring resistance to Karnal bunt were studied in seven bread-wheat (six resistant and one susceptible) genotypes. The resistant genotypes originated in China (‘Shanghai#8’), Brazil (PF71131), the USA (‘Chris’), and Mexico (‘Amsel’, CMH77.308 and ‘Pigeon’). The susceptible line WL711 was from India. Evaluation of these wheat lines and all possible crosses among their F1 and F3 generations (about 100 progenies in each cross) revealed that two partially recessive genes conferred the resistance to Karnal bunt in ‘Pigeon’, whereas four partially dominant genes were present in the other genotypes. ‘Chris’, ‘Amsel’ and PF71131 carry one gene, whereas ‘Shanghai#8’ and CMH77.308 have two genes. ‘Chris’, ‘Amsel’, and PF71131 have different genes, whereas one gene was common to PF71131, CMH77.308 and ‘Shanghai#8’, and another to ‘Chris’ and CMH77.308. Gene symbols were formally designated to the resistant stocks. Resistance was incomplete and stable.  相似文献   

9.
A set of 21 monosomic (2n ‐ 1) and the disomic (2n) lines of the ‘Chinese Spring’ cultivar were crossed with ‘Chirya‐3′, the CIMMYT synthetic wheat line which has been identified as highly resistant for Helminthosporium leaf blight disease (HLB), in order to locate the genes governing disease resistance. The F1 and segregating populations were challenged and screened against the most virulent pure mono‐conidial HLB isolate KL‐8 (Karnal, India). The F1 progenies of the crosses were found to be susceptible because of the recessive nature of resistance. The F2 progeny of the control cross (‘Chinese Spring’בChirya‐3’), segregated in the ratio of 1: 15 (resistant: susceptible), indicating that resistance to HLB was controlled by a pair of recessive genes. While the F2 progeny of 19 monosomic crosses segregated in the ratio of 1: 15 (resistant: susceptible), the progeny of the remaining two crosses, 7B and 7D, deviated significantly from the ratio, revealing that 7B and 7D were the critical chromosomes for resistance genes that were located one on each chromosome. Moreover, the critical lines, 7B and 7D, confirmed the digenic complementary recessive nature of gene action by fitting well with the overall pooled F2 segregation ratio of 13: 51 (resistant: susceptible) as expected for digenic complementary recessive resistance. The F3 segregation ratios of the critical crosses, based on their pooled F2 analysis, was estimated as 19: 32: 13 (non‐segregating susceptible: segregating as susceptible and resistant: non‐segregating resistant). F3 progenies when tested with these ratios showed goodness‐of‐fit, confirming that the two pairs of recessive resistance genes were located on chromosomes 7B and 7D.  相似文献   

10.
Summary Gene action and heritability of groat protein percentage were determined in F1, F2, and F3 generations of nine crosses between three Avena sativa L. cultivars and three A. fatua L. selections. Relationships among groat protein percentage, grain yield, and 100-seed weight also were evaluated. The three A. sativa parents were Dal (high grain yield and intermediate groat protein percentage), Goodland (low grain yield and high groat protein percentage), and Stout (high grain yield and low groat protein percentage). The three A. fatua parents were chosen for the study on the basis of vigorous plant growth and high groat protein percentage. The study was conducted at Madison, Wisconsin in 1979 and 1980.There was partial dominance towards low groat protein percentage. Narrow sense heritability estimates for groat protein percentage were low in Dal and Goodland crosses and intermediate in Stout crosses. In the F2 generation, groat protein percentage was significantly higher in shattering than in nonshattering plants in 1979, but not in 1980. There were significant, positive correlations between groat protein percentage, 100-seed weight, and grain yield in F1 and F2 generations, but they were not large numerically. Relationships among these traits were either negative or nonsignificant in the F3 generation. Although our results indicated that selection for higher groat protein percentage is possible when a low protein A. sativa cultivar is used, most of our simple cross progenies from A. sativa x A. fatua crosses had weak straw and were susceptible to crown rust (Puccinia coronata Cda. var. avenae Fraser and Led.).  相似文献   

11.
A. K. Joshi    S. Kumar    R. Chand  G. Ortiz-Ferrara   《Plant Breeding》2004,123(3):213-219
Three F1 progenies and their families in the segregating generations (F3, F4, F5 and F6), obtained after crossing resistant × susceptible wheat genotypes were studied in the field to determine the genetics of resistance to spot blotch caused by Bipolaris sorokiniana. Spot blotch scores in the F1 generation showed absence of dominance. Individually threshed F2 plants were used to advance the generations. Progenies (200‐250) of resistant genotypes Acc. No. 8226, Mon/Ald, Suzhoe#8 crossed with susceptible ‘Sonalika’ were evaluated in the F3, F4, F5 and F6 generations under induced epiphytotic conditions. Based on disease score distribution in individual progeny rows, F3 progenies were grouped into four classes: homozygous resistant, homozygous susceptible, segregating resistant and segregating susceptible. Resistance appeared to be under the control of three additive genes. The presence of three genes was also noted in the distribution of F4 and F5 lines. In the case of F6 progeny rows, both quantitative and qualitative models were used to estimate the number of segregating genes based on a 2‐year trial. It appeared that resistance to spot blotch was controlled by the additive interaction of more than two genes, possibly only three.  相似文献   

12.
Crosses were performed to introgress genes for productivity and other desirable traits from ricebean (Vigna umbellata) into black gram (Vigna mungo). Crossability was very poor in black gram × ricebean crosses, and only two to nine true hybrid plants were obtained. Plant fertility was very poor in initial generations, but was improved gradually from F2 onwards. Twenty‐four uniform progenies, bulked in F7, were evaluated for yield potential. The percentage increase/decrease in yield ranged from ?35.48 to 50.31 over the check cultivar (‘Mash338’, female parent). All the progenies were found resistant to Mungbean yellow mosaic virus, Cercospora leaf spot and Bacterial leaf spot diseases. Overall, it was found that desirable traits such as high pod number, seed weight, productivity and resistance to diseases have been introgressed successfully into black gram from ricebean. A derivative line, KUG114, recorded yield superiority of 39.45% over the check cultivar ‘Mash338’ on the average of 14 multilocation research trials. It was released under the name ‘Mash114’ for cultivation in the Punjab state.  相似文献   

13.
A study was conducted under controlled environment conditions in a phytotron to determine the nature of the inheritance of resistance Helminthosporium leaf blight (HLB) in a synthetic hexaploid wheat line, ‘Chirya‐3’, against the isolate KL‐8 of Bipolaris sorokiniana from the major wheat growing region of India. Crosses were made between two susceptible lines ‘WH 147’ and ‘Chinese Spring’. Analyses of F1 and F2 populations of these two crosses (‘WH 147’בChirya‐3’ and ‘Chinese Spring’בChirya‐3’) showed that resistance against the isolate in ‘Chirya‐3’ was governed by two recessive genes functioning in a complementary interaction giving an F2 segregation pattern of 1 : 15 (resistant : susceptible). The segregation pattern of the resistant F2 progenies in F3 families from both crosses confirmed that two homozygous recessive genes were responsible for resistance to the isolate of Bipolaris sorokiniana in the synthetic line ‘Chirya‐3’. It is proposed that the genes be designated as hlbr1 and hlbr2.  相似文献   

14.
Summary The inheritance of resistance to coffee berry disease (CBD) has been studied by applying a preselection test to F2 progenies of a half diallel cross between 11 coffee varieties with different degrees of resistance and to sets of parental, F1, F2, B11 and B12 generations of crosses between resistant and susceptible varieties. True resistance to CBD appears to be controlled by major genes on three different loci. The highly resistant variety Rume Sudan carries the dominant R- and the recessive K-genes. The non-allelic interaction between these two genes is of a duplicate nature. The R-locus has multiple alleles with R 1R1alleles present in Rume Sudan and the somewhat less effective R 2R2alleles in a variety like Pretoria, which also has the K-gene. The moderately resistant variety K7 carries only the recessive K-gene. The arabica-like variety Hibrido de Timor (a natural interspecific arabica x robusta hybrid) carries one gene for CBD resistance on the T-locus with intermediate gene action. It probably inherited this gene from its robusta parent. There is circumstantial evidence that the resistance to CBD is of a stable nature, but it is advisable to accumulate in one genotype as many resistance genes as possible by combining in the breeding programme the resistance of Rume Sudan with that of Hibrido de Timor.  相似文献   

15.
A.K. Joshi  R. Chand  B. Arun 《Euphytica》2002,123(2):221-228
A total of 1,407 spring wheat (T. aestivum) lines of Indian and CIMMYT (International Maize and Wheat Improvement Centre, Mexico) origin were evaluated for plant height, days to maturity and resistance to spot blotch (caused by Bipolaris sorokiniana) during the 1994–95, 1995–96 and 1996–97 crop seasons. The frequency distribution of genotypes, based on disease score ignoring the growth stages, differed from the distribution in which disease score was assessed on a similar growth stage. Two crosses each,between `tall resistant × dwarf susceptible' and `late resistant × early susceptible' genotypes, were made. The evaluation of homozygous resistant lines in the F3, F4 and F5 generations of both crosses showed a wide range of plant height and days to maturity. These lines showed significant differences for plant height and days to maturity but did not show a significant difference for AUDPC values of spot blotch. The correlation coefficients for AUDPC versus plant height or days to maturity were weak, i.e., – 0.336 and 0.061, respectively. Results indicated that resistance to spot blotch severity was independent of plant height and days to maturity in progenies from these crosses.  相似文献   

16.
A.K. Joshi  R. Chand 《Euphytica》2002,124(3):283-291
One thousand four hundred and seven spring wheat germplasm lines belonging to Indian and CIMMYT wheat programs were evaluated for their leaf angle and resistance to spot blotch caused by Bipolaris sorokiniana during three consecutive crop seasons, 1994–95, 1995–96 and 1996–97.Disease severity was recorded at six different growth stages beginning from tillering to late milk stage. Three crosses (M 3109 × Sonalika, HP 1808 × K 9006 and HD 2662 × K 9006) were made between genotypes with erect and drooping leaves. M 3109 was resistant, Sonalika susceptible while the other three lines possessed moderate resistance to spot blotch. Individually threshed F2 plants were used to advance the generations. Leaf angle and spot blotch resistance were recorded in parents, F1, F3, F4and F5 generations. Leaf erectness in F1 generation showed partial dominance. Evaluation of F3, F4 and F5 progenies(120–150) revealed that leaf angle was under the control of few genes that appeared to be close to three. Germplasm lines with erect and semi-erect leaves displayed lower spot blotch severity than those having drooping and semi-drooping leaves. Lines homozygous for erect leaf posture in F3,F4 and F5 generations showed significantly lower mean AUDPC than those with drooping leaves. A positive correlation (0.58) between leaf angle and AUDPC further indicated a positive influence of leaf erectness on severity to spot blotch disease. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Summary Reciprocal crosses were carried out between Triticum dicoccoides sel. G-25-highly resistant to Puccinia striiformis race 20A-and Triticum durum cultivar Nursith 163-which served as susceptible parent.F1 hybrids in one of the crosses showed a wide range of infection types to the test isolate, whereas in a repeated cross all F1 plants proved highly resistant. The variable reaction pattern observed in the F1 hybrids of the first cross suggests incomplete penetrance of the resistance factor in certain environmental conditions.The segregation ratio displayed by the F2 progenies indicates that a single dominant factor for resistance to stripe rust race 20A was transferred from wild emmer to cultivated durum wheat.Contribution from the Agricultural Research Organization, Volcani Center, Bet Dagan, Israel. 1973 Series, No. 291-E.  相似文献   

18.
An experiment was conducted to study the genetics and nature of gene action of resistance to watermelon bud necrosis orthotospovirus (WBNV) in watermelon. The experimental materials comprised of two resistant (BIL‐53 and IIHR‐19) and one susceptible (IIHR‐140) parents. Each of the resistant parents was crossed with the susceptible parent to develop six generations (P1, P2, F1, F2, BC1 and BC2) to study genetics. The results of segregation in F2 and backcross progenies suggested that resistance is governed by a major dominant gene along with other background minor genes in both the crosses. BIL‐53 was found to possess higher degree of resistance with simple inheritance and hence may be of interest to breeders. Simple selection can be effective for improving the trait in the cross BIL‐53 × IIHR‐140 as additive gene action is prevalent.  相似文献   

19.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

20.
Summary To assess the possibilities offered by isozymes to locate resistance genes against barley mild mosaic virus (BaMMV), the isozyme patterns of 19 barley (Hordeum vulgare L.) genotypes carrying genes different from ym4 were determined. Of the 15 isozyme systems tested, only three were polymorphic, namely aconitate hydratase, esterase, phosphogluconate dehydrogenase, providing markers on four of the seven barley chromosomes. Studies of F2 progenies derived from three crosses between resistant genotypes and susceptible varieties failed to reveal linkage between resistance genes and isozymes. Another goal of the experiment was to study the linkage relationships between ym4 and the esterase locus (Est1-Est2-Est4). Our estimates of the recombination rate between these two loci (3.41 and 8.32%) were in the range of those reported between these esterases and one of the resistance genes of the Chinese variety Mokusekko 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号