首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对小RNA分类及其在慢性疾病治疗中的应用的介绍,阐明了小RNA在生命科学基础理论研究及在疾病治疗中的重要应用价值;通过对现阶段研究成果的分析,指出了小RNA研究的优势和存在的问题,并预测了其未来发展趋势。  相似文献   

2.
RNA沉默是指导入或细胞内转录合成的双链RNA会特异性地降解具有同源序列的mRNA,从而导致内源的、外源的和病毒基因的沉默,它是真核生物特有的一种阻止转座子转座和抵御外源DNA入侵的防御机制。利用RNA沉默技术,人们正对大量基因进行功能研究,并在作物性状改良方面取得了一些可喜成果。  相似文献   

3.
RNA干涉与基因功能研究进展   总被引:2,自引:0,他引:2  
RNA干涉是通过双链RNA的介导,在基因的转录后水平上,特异性抑制具有相应序列的基因表达,即通过双链RNA的介导特异性降解相应序列的mRNA,从而导致转录后水平的基因沉默。迄今,在真菌、植物、动物等真核生物中都发现存在这一基因沉默机制。RNA干涉对于抵抗病毒入侵、抑制转座子活动、生物体的发育和基因表达调控都有重要作用;它也为基因功能的研究开辟了一条新途径。文章综述了RNA干涉的机制及其在基因功能研究方面的最新进展。  相似文献   

4.
植物转基因抗性策略研究进展   总被引:1,自引:0,他引:1  
通过转基因技术使植物获得抗病性是控制植物病毒感染的一种重要技术途径。RNA干扰技术的出现为植物转基因抗性策略的研究提供了新思路。植物转基因抗性产生方法主要是通过表达不同的病毒蛋白(外壳蛋白、复制蛋白、运动蛋白及其他病毒蛋白)、RNAs(反义RNA、卫星RNA、缺陷干扰RNA、发夹RNA及人工微小RNA)、非病毒基因(核酸酶、抗病毒蛋白抑制子及植物体)、宿主来源的抗性基因(显性抗性基因和隐性抗性基因)及各种宿主防御反应因子等。介绍了以上几种抗性策略并分析了目前尚存在的问题,以期为植物转基因抗性策略研究的学者提供参考。  相似文献   

5.
董姻然  陈湘宁  常希光  黄健 《安徽农业科学》2014,(8):2273-2275,2314
[目的]为了获得质量较好的芹菜茎的总RNA,为后续分子生物学试验提供基础。[方法]试验对1种RNA提取方法(Trizol法)和2种RNA提取试剂盒(RNA prep Pure Plant Kit法、RNA simple Total RNA Kit法)方法进行比较研究。[结果]RNA prepPure Plant Kit方法得率低,且OD260/OD280值低于1.8,Trizol法OD260/OD230高于2.0,且得率低于RNA simple Total RNA kit法。只有RNA simple Total RNA kit法提取的RNA质量最好,得率最高。[结论]与Trizol法和RNA prep Pure Plant Kit法相比,RNA simple Total RNA Kit法提取的芹菜茎总RNA得率高,完整性好,凝胶电泳泳道无杂质,可以满足半定量RT-PCR的试验需要。  相似文献   

6.
RNAi技术(RNAinterference)即RNA干扰技术.是由一个双链RNA(dsRNA)来代替传统的反义核酸进行转录而产生的基因沉默现象。其特异性强、稳定性高、高效快捷,已在生物学研究领域得到广泛而有效地应用。本文主要介绍RNAi的作用机理以及RNAi技术在植物育种中的应用现状和前景。  相似文献   

7.
适宜于实验教学的动物组织总RNA提取的操作方法   总被引:1,自引:0,他引:1  
为探索适宜于实验教学的动物组织总RNA的提取方法,采用氯仿处理实验器皿、耗材和水以降低外源性RNA酶对RNA的降解作用。结果表明,操作过程中合理利用氯仿能够有效降低外源性RNA酶的污染;与DEPC水处理效果相比,提取的总RNA均可用于分子生物学研究和RT-PCR扩增,但使用氯仿处理更为安全。  相似文献   

8.
长链非编码RNA(Long non-coding RNA,lncRNA)是缺乏开放阅读框架,且长度大于200 nt不编码蛋白质的转录本,其绝对数量大、种类多,在表达模式上具有明显的细胞特异性.lncRNA通过碱基配对与DNA或RNA,或通过RNA高级结构与蛋白质结合,发挥多种生物学功能,共同构成了一个复杂而精细的分子调...  相似文献   

9.
RNA干涉技术     
何平  张志宏 《安徽农业科学》2006,34(17):4245-4246
综述RNAi的发展历史,介绍RNA的作用机制及其特点并展望其应用前景。  相似文献   

10.
综述RNAi的作用机制,RNAi对生物的作用,RNAi技术的应用,展望RNAi技术的前景。  相似文献   

11.
根据近几年来研究的最新资料,从植物病毒RNA间的重组位点的特征以及重组体亲本链双方的来源的角度对植物病毒RNA的重组类型作了介绍,并对其重组机制作了综述。  相似文献   

12.
RNA干扰(RNA interference, RNAi)是一种在生物体内高度保守的、由20~30个核苷酸(nucleotide, nt)组成的小分子非编码RNA引发的基因沉默现象。在昆虫等真核生物中,干扰小RNA(small interfering RNA, siRNA)、微RNA(microRNA, miRNA)和PIWI蛋白互作RNA(PIWI-interacting RNA, piRNA)等小分子非编码RNA在RNA干扰中发挥着重要作用。RNA干扰在害虫防治中的应用主要体现在基因功能研究、转基因抗虫植物及新型核酸农药研发等方面。RNA干扰技术及其产品在应用之前,需严格评价其在非靶标效应、靶标害虫的抗性及环境持久性方面的安全风险。本文就RNA干扰技术的作用机制、RNA干扰在农林害虫防治中的应用及其安全性等方面进行了综述,以期为RNA干扰技术在害虫防治中获得更广泛的应用提供一定的理论依据。  相似文献   

13.
真菌RNA沉默研究进展   总被引:1,自引:1,他引:0  
阻抑(Quelling)与减数分裂沉默(Meiotic silencing by unpaired DNA,MSUD)等真菌RNA沉默(RNA silencing)现象的研究拓展了我们当前对基因表达调控的认知。随着测序信息量的爆炸性增长与功能研究的不断深入,真菌RNA沉默展示出的复杂与多样为真核生物研究提供了全新的视角。本文就当前真菌RNA沉默及相关小分子RNA(Small RNA,sRNA)的研究现状做一简要概述。  相似文献   

14.
RNA干扰(RNAinterference,RNAi)即通过双链RNA的介导特异性降解相应序列的mRNA,从而导致转录后水平的基因沉默的现象。作为一种简单有效的影响基因表达的工具,RNA干扰已经被广泛应用于许多领域,同时也为基因功能的研究开辟了一条新途径。文章综述了RNA干扰的机制及其应用方面的最新进展。  相似文献   

15.
16.
采用3种方法提取草石蚕块茎的总RNA,以期筛选出适合草石蚕块茎总RNA提取的最佳方法。结果表明,RNAiso Reagent法提取草石蚕块茎总RNA的28S和18S条带清晰明亮,RNA无降解,无DNA污染,质量较好。王艳红法和TRIzolR Reagent一步提取法提取总RNA的28S和18S条带较暗,提取的总RNA有降解现象。根据紫外分光光度计检测结果分析,3种方法提取草石蚕块茎总RNA的纯度都较好。从提取RNA的产量来看,RNAiso Reagent法提取总RNA的浓度最高,为1112μg/mL,王艳红法次之,TRIzolR Reagent一步提取法最低。因此,RNAiso Reagent法是草石蚕块茎总RNA提取的最佳方法。  相似文献   

17.
根据近几年来研究的最新资料,从植物病毒RNA间的重组位点的特征以及重组体亲本链双方的来源的角度对植物病毒RNA的重组类型作了介绍,并对其重组机制作了综述.  相似文献   

18.
RNA干扰是近年来分子生物学技术领域的研究热点之一。该技术以其高特异性、高效性等显著优势已经被广泛应用到生命科学各研究领域中。本文从目前研究较多的RNA干扰机制、siRNA的设计原则、siRNA的转染方法及RNA干扰在药物靶标识别和确证中的应用方面作一综述。  相似文献   

19.
真核细胞中存在大量的非编码RNA,~22nt的小RNA是其中一类非常重要的调控RNA,主要包括siRNA和miRNA两种类型,二者均由类似RNaseⅢ的核酸内切酶一Dicer加工产生,随后进入沉默复合体抑制靶基因表达。miRNA分子与siRNA类似,但miRNA的前体在基因组上具有独立的转录单位,可自身折叠成发卡结构,其靶基因主要是与器官发生及生长发育相关的转录因子以及调控蛋白。miRNA在生物生长发育的各个时期都扮演着重要的角色,调控许多重要的生物途径,处于基因调控网络的核心位置。  相似文献   

20.
[目的]研究对RNA丰度值低、硬度大、处理困难的牙齿组织总RNA的提取和纯化技术。[方法]采集10只Hartley豚鼠的切齿和臼齿,分别对其进行了总RNA的提取和纯化,对所提纯的总RNA进行了琼脂糖凝胶电泳鉴定,以及浓度和纯度的测定。[结果]切齿和臼齿总RNA均可见明显的28S、18S和5S三条带,RNA浓度均大于100 ng/μl,A260/A280值均在1.7~2.0之间,A260/A230值在0.1~0.7之间,总RNA的提纯效果较好。[结论]为动物硬组织总RNA的提取提供了技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号