首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 54 毫秒
1.
微型计算机温室环境监控系统的研究   总被引:8,自引:0,他引:8  
研究了以单片机为核心的温室环境微机监控系统,对其硬件构成和软件进行了设计。该系统能自动巡回检测温室的温度、湿度及光照等参数,且具有报警、控制及数据打印输出功能。  相似文献   

2.
结合坝上气候特点及温室光照自动控制需求,设计了作物光照强度控制系统。首先构建温室环境模型,以自然光与人工补光进行温室光照建模,设计温室光照自动控制流程。在此基础上通过无线互联网和ZigBee设计并实现了温室光照度自动控制系统,阐述了系统构架设计、温度感知单元、数据传输单元、控制执行单元、监控后台单元、可调光源单元的设计,引入CodeWarriorIDE开发环境进行控制软件设计,最后通过测试证明其促进作物生长的效果。  相似文献   

3.
温室信息管理系统是智能温室环境监控系统的核心。结合智能温室管理的需求分析,采用visual studio.net平台开发了基于WEB的智能温室信息管理系统。系统共分为用户管理、数据管理、实时信息监测、智能决策、报警显示、控制等功能模块,实现了对温室温度、湿度、光照、CO2浓度等环境参数的自动采集与智能化控制,并能够通过网络终端进行网络监控,减少了劳动管理成本,提高了温室运行效率。系统运行稳定、性能可靠,有一定的推广应用价值。  相似文献   

4.
温室大棚自动控制系统的研究   总被引:2,自引:0,他引:2  
本文阐述了一个由上下微机组成的温室综合环境自动控制管理系统。它通过对温室内的温度、湿度、光照、土壤湿度等参量的采集,并根据上述参数实现对温度、湿度、光照、土壤湿度等参数的自动调节,达到了温室大棚自动控制的目的。  相似文献   

5.
光照状况是影响日光温室生产力的重要因素,温室光环境由光照度、光照时数、光照分布和光质四个方面内容构成.本文从温室结构、覆盖材料、光环境监控以及设施补光等几方面综述了温室光环境理论和温室光环境调控技术的研究进展.针对温室内光照度和光照分布状况提出了将立柱栽培引入到矮生叶菜、花卉类的温室生产中时会产生光照分布不均匀的问题,探讨了以光环境建模为基础,结合采光调控理论并借助补光措施来改善温室立柱栽培中作物光照条件的研究思路.  相似文献   

6.
温室的管理质量决定着温室蔬菜生产的产量和效益,该文通过在温室中安装物联网自动控制系统和人工2种方法管理温室蔬菜生产,研究分析物联网技术应用对温室蔬菜产量、生产成本、经济效益等的影响。试验研究表明,在温室中应用物联网技术,对温室内的温度、湿度、光照、二氧化碳浓度、土壤湿度等进行自动化精细动态监控的方式来管理作物,可有效提高蔬菜产量,降低生产成本。  相似文献   

7.
基于物联网技术的温室微气候监控系统设计   总被引:1,自引:0,他引:1  
本文结合物联网技术与LoRa技术,研究了一种温室微气候的监控系统。该系统主要由传感器集成模块、图像采集系统搭载在温室巡检机器人上完成,通过LoRa WAN和以太网完成数据的传输,并设计了支持自动、手动2种控制模式的自动喷雾、补充二氧化碳浓度和光照的系统。从一定程度上提高了温室的无人管理效率,促进了智慧农业的发展。  相似文献   

8.
该文主要介绍了日光温室光照调控系统的设计方案,即采用无线传感器网络技术与计算机技术结合起来,进行温室环境中光照调节控制系统的硬件及软件设计。为了使温室能够提供足量的够植物生长的太阳辐射能,可在硬件的光照监测系统中调控光照量的参数,实现其自动采集;利用遮阳幕实现了温室中光照环境的智能调节和控制。软件上基于无线传感器网络开发平台,选择合适的光照传感器,完成温室内光照信息的采集、数据的处理,从而方便、安全、精确的实现光照的调节和控制。  相似文献   

9.
针对温室大棚范围广、环境因子多的特点,提出了一种基于CAN总线和GPRS的温室大棚监控系统。在硬件方面,用单片机C8051F040采集温湿度、光照和CO2浓度等环境参数,所有数据通过CAN总线和GPRS上传到远程上位机中,同时通过上位机可以控制大棚的温湿度、通风设备、补充光源的开关。上位机软件采用组态王软件实现,具有直观和可靠性。通过试验证明,整个系统工作实时性好,操作简单方便,能很好地满足温室大棚的自动监控的需要。  相似文献   

10.
在正常生产管理条件下,利用温室智能监控系统,自动监测记录冬、春两季日光温室内外空气温度、光照强度,温室内空气湿度、土壤温度,研究冬、春两季日光温室环境因子日变化差异及环境因子间的相互关系差异。结果表明,土壤温度与温室内外光照及温室内湿度的相关性,春季显著大于冬季;温室内湿度与温室内、外光照强度、温室内外温度以及温室外温度与温室的相关性,春季显著小于冬季。土壤温度与温室内、外温度的关联程度,春季温室内温度强于温室外温度,冬季温室外温度强于温室内温度。温室外温度与温室内、外光照、土壤温度的关联程度,春季温室内、外光照强于土壤温度,而冬季土壤温度强于温室内、外光照。冬季温室内湿度显著高于春季,日变化幅度显著小于春季。春季最低温室内要高于冬季最低温度10℃以上,日变化幅度明显小于冬季;春季温室内、外最大光照强度是冬季的2倍,且春季光照时间长。春季室外温度平均高于冬季12℃以上,春季温室内土壤温度始终要高于冬季10℃以上。  相似文献   

11.
温室环境自动监控   总被引:1,自引:0,他引:1  
本文介绍了温室自动控制系统的组成及工作原理。该系统可完成温室内的温度、湿度、光照、CO等参数的采集,并可根据上述参数实现温度调节、光度调节、节水灌溉及CO2等参数的自动调节,实现了温室大棚自动控制功能。  相似文献   

12.
针对温室的特点设计开发了温室温度和光照度测控系统。该系统以单片机STC89C52为微控制器,选用DS18B20温度传感器对温室温度进行采集,选用TSL2516光强传感器,通过光电耦合器和继电器控制加热器和光源,从而控制温室温度和光照度,实现了温室中温度、光照度自动控制与报警系统,同时通过串行总线将温度和光强数据经过微控制器送上位机进行数据分析。该系统解决了人工控制温室温度和光照度误差大,且费时费力、效率低等问题,促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济和社会效益,具有推广价值。  相似文献   

13.
基于STM32的智能温室远程控制系统的设计   总被引:1,自引:0,他引:1  
以STM32为主控制器,设计了集温室环境信息采集和自动控制于一体的基地、远程两级监控模式的温室智能控制系统。基地监控支持实时环境信息显示、历史环境信息查询和环境信息变化曲线显示功能,利用触摸屏设计的友好人机接口,可实现对作物理想生长环境参数的设定,系统依据设定的环境参数和实时采集的环境信息控制环境调节设备实现对温室环境的自动调节,以满足作物生长需要。远程监控采用RS232通信协议与基地控制系统连接,实现参数设定、实时数据显示及历史查询显示功能。系统还支持手动模式控制,以应对突发报警调节。试验分析表明该系统对温室环境监控具有良好的实用性和可靠性。  相似文献   

14.
北方日光温室智能监控系统的设计与实现   总被引:1,自引:0,他引:1  
建立日光温室智能监控系统,能够推动我国北方日光温室设施园艺现代化,对日光温室的智能监控有助于提高设施园艺的产量,实现对日光温室的现代化管理。针对中国北方日光温室设施农业环境数据的监测与环境控制需要,设计了一套以ST公司的STM32单片机为控制核心并符合北方日光温室环境的智能监控系统,该系统综合运用传感器技术,自动检测技术和通讯技术等实现对日光温室温度、湿度、光照度、CO2浓度的采集、存储、显示、监测和控制,并对采集到的温室环境因子数据进行了线性回归分析。完成了对环境温室的实时遥测,遥调和遥控,同时能提供各温室环境因子的历史记录和数据。运行结果表明:该智能监控系统运行稳定,测量结果准确可靠,扩展性强,可以满足控制要求,具有良好的应用前景。  相似文献   

15.
李玉霞  狄敬国 《安徽农业科学》2014,(9):2799-2800,2822
为了减轻温室管理的难度,实现温室的远程监控,提出了一种新型智能化的温室控制方法,采用VC++进行编程,实现计算机与PLC的远程通信,可以灵活地监测控制温室里的温度、潮湿度、光照强度等.操作控制方便,工作可靠稳定,环保节能.实际操作证实,该远程通信技术在温室的自动远程控制方面起到了很大的作用,提高了劳动效率和农业管理水平.  相似文献   

16.
针对农业温室分布地域广、分散的特点,设计了基于Modbus-RTU和GPRS通信的温室环境控制系统。系统由西门子S7-200 SMART PLC、触摸屏、GPRS模块和上位机服务器构成,利用Modbus-RTU采集现场温湿度、光照度等传感器的实时信号,并在触摸屏进行实时显示以及实现多种模式下的手动控制;通过GPRS模块把采集到的信息远程传送至上位机服务器,对信息进行接收和综合分析处理。现场测试表明,该系统结构设计合理、系统运行稳定,能够满足花卉温室远程监控的要求。  相似文献   

17.
针对于我国北方蔬菜大棚设备简陋,监控设备不足,产出投入比不高等问题,设计了基于Lab VIEW的蔬菜大棚种植监控系统。系统将蔬菜大棚内的温湿度、光照度、气体(O2、CO、CO2)浓度、肥液浓度和流量等参数,通过传感器变送后经数据采集单元采集后传至PC机,并在Lab VIEW中利用基于数据的生产者/消费者框架编写了系统的监控软件。监控系统将蔬菜大棚内环境参数进行实时采集与显示,并通过输出脉冲宽度调制(pulse width modulation,PWM)波控制执行部件,使温湿度、光照度、气体浓度、肥液浓度和酸碱度以及流量等参数快速稳定在设定范围内;在系统编程中,利用Lab VIEW控件自定义功能,设计了形象简洁的交互界面,实现了自动滴灌混肥和环境监控的功能。  相似文献   

18.
[目的]温室环境条件特别是温度对于作物生长和发育具有十分显著的影响。日光温室调控的主要环境因子之一是温度。然而,自然环境下的光照对温度产生作用,影响空气温度的监测精度。大多温度传感要求将传感器置于避光处,然而实际应用中难以保证。[方法]采用机器学习中的支持向量机算法(SVM),对日光温室内的温度智能监测算法进行了研究,根据光照情况对实时监测的温度数据进行校准。[结果]通过与实验测量的数据进行对比分析,结果表明,所提出的监测方法可以较为准确地实时监测空气温度,从而无需使用隔热材料或者遮阳处理,就可以基于监测的数据更精确地对相应的环境因素进行调节。[结论]基于该方法,可采用常用的工业设备实现温室大棚内实时温度数据的监测,既可以节约设备和人力成本,又可以为温室控制提供准确的数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号