首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
 诱导抗性是指植物受到适当刺激后获得的对随后病原菌侵染的抵抗能力.许多植物上诱导的防卫反应不仅在植物的初侵染部位增强,而且在未受侵染的、空间上隔离的部位也增强,这种诱导抗性又称为系统性获得抗性(systemic acquired resistance,SAR).  相似文献   

2.
水杨酸诱导水稻幼苗抗白叶枯病研究   总被引:18,自引:2,他引:16  
研究了水杨酸(SA)对水稻幼苗抗白叶枯病的诱导抗性效果。结果表明,SA诱导稻苗产生对白叶枯病抗性的最适浓度范围为5.0 ̄50.0μg/ml,浸根处理撮佳浓度比喷雾处理稍低。以5.0或10.0μg/ml浓度的SA分别在接种前1d或2d浸根或喷雾处理4叶1心期的稻苗,稻叶的发病率、病斑长度和病情指数都比清水对照明显降低,其中病情指数分别降低50.8%和50.4%。SA浸根或喷雾处理后接种白在菌的最佳间  相似文献   

3.
 甘薯块根组织受病原物的侵染或经有害化学试剂(如HgCI2)的处理,均能诱发产生一类呋喃类萜植保素。虽然人们对这类物质中主要成分——甘薯酮能阻碍甘薯黑斑病菌(Ceratocystis fimbriata)孢子的萌发和菌丝的生长作过报导,但对感病后甘薯块根中的这类呋喃类萜合物的活性,没有进行广泛研究.  相似文献   

4.
1 植物病害的命名植物病害的命名方法有 :1.1 以病害症征来命名 如黄瓜白粉病 ,是指黄瓜染病后病株叶片正面生有大量白色粉末状物 ;番茄灰霉病指在病部有灰色霉状物 ;十字花科蔬菜菌核病 ,是由于在植株受害部位有菜籽状黑褐色菌核。1.2 以病害的病状命名 如幼苗猝倒病 ,幼苗茎基部组织坏死 ,在坏死处倒伏 ;番茄青枯病 ,染病后萎蔫失水迅速 ,植株仍保持绿色 ;苹果树腐烂病 ,受害的枝干、主枝等部位组织腐烂。1.3 以病害的病原物命名 如炭疽病 ,是由炭疽菌引起的一类真菌病害 ;疫病是指由疫霉菌引起的一类病害。2 植物病害的别名与俗…  相似文献   

5.
苯并噻二唑诱发水稻对纹枯病的抗性   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了苯并噻二唑(B1H)诱发水稻产生对纹枯病的抗性。离体条件下,1.0mmol/L BTH对纹枯病菌菌丝生长无明显抑制作用。BTH叶面或灌根处理四叶一心期水稻幼苗,并将植株第2、3和4叶离体接种纹枯病菌,水稻叶片纹枯病病斑长度明显下降,BTH诱发苗期水稻产生抗性的最佳诱导期在处理后的3—5天,最佳浓度为0.1mmol/L,BTH灌根处理诱发抗性的效果较好。用BTH溶液叶面喷雾处理成株期水稻倒二叶后离体接种纹枯病菌,倒二叶、倒一叶和剑叶上病斑长度显著低于对照,最佳诱导期在处理后3—5天。用BTH处理苗期水稻第2叶或成株期倒二叶,可使未经处理的苗期水稻第3和4叶以及成株期水稻倒一叶和剑叶上纹枯病病斑长度显著下降。  相似文献   

6.
细胞乳突的形成和小麦白粉菌成功侵染的关系   总被引:4,自引:0,他引:4  
 用一套己知抗白粉病单基因的小麦材料,研究了小麦白粉菌诱发寄主表皮细胞产生的乳突与成功侵染的关系。抗病小麦叶片上,诱发产生乳突的分生孢子占测定分生孢子数的58.8%,感病品种为63.8%。这表明抗性不同的小麦材料接种白粉菌之后,叶表皮细胞内形成乳突的百分率相近,然从在抗病材料和感病材料中形成的乳突阻止病原物发育和成功侵染的作用不相同,在抗病叶片上,诱发产生乳突的分生孢于中有88%停留在压力孢阶段,不继续发育,仅有12%能突破乳突形成吸器,使得侵染成功。与此对照,在感病叶片上只有32%诱发乳突的分生孢子不能穿透乳突,而68%则能突破乳突。成功地与寄主建立寄生关系。我们的研究表明,乳突能否成功地阻止白粉菌侵入可能与乳突形成的迟早有关。  相似文献   

7.
植物的根腐病多是由两种或两种以上病原物复合侵染造成,较难防治。用药剂处理土壤,易造成对环境和农产品污染,又会破坏土壤生态平衡。我们从1984—1986年,研究利用太阳热能处理土壤,利用高温杀伤土壤病原物,起到土壤消毒的作用。 一、提高土壤温度的方法 夏季作物收后,整地施肥或做南北向垄,  相似文献   

8.
 NPR1(non-expressor of pathogenesis-related gene 1)基因在拟南芥系统获得抗性中起着关键作用,可调控拟南芥植株广谱抗性的发生。本文报道了从心叶烟中克隆NPR1同源基因(NgNPR1)及其表达特性的研究结果。NgNPR1 cDNA全长2253 bp,编码588个氨基酸。将NgNPR1基因组全长与cDNA序列进行比对发现,NgNPR1基因组DNA含有4个外显子和3个内含子。Southern杂交分析表明,在心叶烟基因组中NgNPR1为单拷贝基因。采用绿色荧光蛋白在洋葱表皮瞬时表达的试验,证明了NgNPR1蛋白在水杨酸诱导时会从细胞质转运到细胞核中。Northern杂交分析发现,NgNPR1基因可以被与植物抗病相关的信号分子如水杨酸、茉莉酸甲酯、过氧化氢和乙烯所诱导。进一步研究发现,植物病原物如赤星病菌、青枯病菌和烟草花叶病毒对心叶烟植株的侵染也会使NgNPR1表达量增加。这些结果表明,NgNPR1基因在心叶烟植株抵御病原物侵染过程中可能起着重要作用。  相似文献   

9.
预合成抗菌物质抑制甜瓜的两种病害的侵染   总被引:2,自引:0,他引:2  
 果实在发育过程中预合成抗菌物质(preformed antifungal compounds),或受病原侵染刺激诱导而合成植物保卫素(phytoalexin)或植物抗毒素(phytoanticipins),是果实通过内在机制实现对病原物生长产生控制、抵抗病原侵染、控制病害发展、减轻采后腐烂的重要方式。在甜瓜及葫芦科植物果实中,虽发现存在不同的抗病机制,但尚未发现任何预合成植物抗病物质的存在。  相似文献   

10.
黄瓜感染霜霉病菌叶片中一些酶活性的变化   总被引:178,自引:2,他引:178  
 黄瓜抗病组合受霜霉病菌侵染的部位周围的叶组织内多酚氧化酶(PPO)活性的增加高于中抗和感病组合,而中抗组合又高于感病组合;抗性和中抗组合的过氧化物酶(PO)活性的增加高于感病组合;抗性组合苯丙氨酸解氨酶(PAL)活性的增加高于中抗和感病组合。抗性组合受侵后产生两条新的PPO同功酶带和两条新的PO同功酶带;中抗组合产生一条新的PPO同功酶带和一条新的PO同功酶带;感病组合只产生一条新的PO同功酶带,没有新的PPO同功酶带出现。  相似文献   

11.
受病原体感染后,植物会获得一种持久广泛的抗性,称为系统获得性抗性,受到昆虫侵害时也会获得类似的系统获得性抗性.植物系统抗虫与抗病信号分子不同,前者是茉莉酸(JA)、甲基茉莉酸(Me-JA)或系统素,而后者是水杨酸(SA).SA介导的系统抗病信号途径与JA等介导的系统抗虫信号途径并非完全独立,而是存在所谓的"交叉对话",但"交叉对话"结果是相互促进还是抑制仍不清楚.植物系统抗性信号及其互作研究无疑会完善植物保护策略.  相似文献   

12.
Induced Disease Resistance in Plants by Chemicals   总被引:23,自引:0,他引:23  
Plants can be induced locally and systemically to become more resistant to diseases through various biotic or abiotic stresses. The biological inducers include necrotizing pathogens, non- pathogens or root colonizing bacteria. Through at network of signal pathways they induce resistance spectra and marker proteins that are characteristic for the different plant species and activation systems. The best characterized signal pathway for systemically induced resistance is SAR (systemic acquired resistance) that is activated by localized infections with necrotizing pathogens. It is characterized by protection against a broad range of pathogens, by a set of induced proteins and by its dependence on salicylic acid (SA) Various chemicals have been discovered that seem to act at various points in these defense activating networks and mimic all or parts of the biological activation of resistance. Of these, only few have reached commercialization. The best- studied resistance activator is acibenzolar-5-methyl (BION). At low rates it activates resistance in many crops against a broad spectrum of diseases, including fungi, bacteria and viruses. In monocots, activated resistance by BION typically is very long lasting, while the lasting effect is less pronounced in dicots. BION is translocated systemically in plants and can take the place of SA in the natural SAR signal pathway, inducing the same spectrum of resistance and the same set of molecular markers. Probenazole (ORYZEMATE) is used mainly on rice against rice blast and bacterial leaf blight. Its mode of action is not well understood partly because biological systems of systemically induced resistance are not well defined in rice. Treated plants clearly respond faster and in a resistant manner to infections by the two pathogens. Other compounds like beta-aminobutyric acid as wdl as extracts from plants and microorganisms have also been described as resistance inducers. For most of these, neither the mode of action nor reliable pre-challenge markers are known and still other pathways for resistance activation are suspected. Resistance inducing chemicals that are able to induce broad disease resistance offer an additional option for the farmer to complement genetic disease resistance and the use of fungicides. If integrated properly in plant health management programs, they can prolong the useful life of both the resistance genes and the fungicides presently used.  相似文献   

13.
Costs and trade-offs associated with induced resistance   总被引:1,自引:0,他引:1  
Plants resist attack by pathogens and herbivorous insects through constitutive and inducible defences. Based on differences in signalling pathways and spectra of effectiveness, different types of induced resistance have been defined. Systemic acquired resistance (SAR) occurs in distal plant parts following localized infection by a necrotizing pathogen. It is controlled by a signalling pathway that depends upon the accumulation of salicylic acid (SA) and the regulatory protein NPR1. In contrast, induced systemic resistance (ISR) is induced by selected strains of non-pathogenic plant growth promoting bacteria (PGPR). ISR functions independently of SA, but requires NPR1 and is regulated by jasmonic acid (JA) and ethylene (ET). It is generally believed that induced resistance evolved to save energy under pathogen or insect-free conditions, although costs still arise when defences are activated following attack. Costs can arise from the allocation of resources to defence and away from plant growth and development, and there are also ecological costs which result from trade-offs between induced resistance and the plant's interaction with beneficial organisms e.g. mycorrhizal fungi. To date, few studies have examined the costs and trade-offs associated with induced resistance to pathogens. There is a clear need for long-term studies of costs and trade-offs associated with induced resistance in crops under commercial conditions. Without such information, the potential offered by induced resistance is unlikely to be realized.  相似文献   

14.
拟南芥的抗病信号传导途径   总被引:2,自引:0,他引:2  
 拟南芥是研究植物与病原物相互作用的模式植物。植物感病和抗病取决于病原物无毒基因产物和寄主抗病基因产物的识别,以及随后的相关防卫反应的激活。在拟南芥的抗病过程中,水杨酸、茉莉酸、乙烯等信号分子都不同程度地参与着抗病过程中的不同环节,起着非常重要的作用。由于这些信号分子在对不同病原菌的抗性中的作用存在差异,因而将抗病信号传导分为依赖于水杨酸和依赖于茉莉酸/乙烯的途径。本文将着重讨论这些信号分子在植物系统获得抗性以及诱导系统抗性中的作用。  相似文献   

15.
Selected strains of rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant named rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resistance (SAR) in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Some rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface. In other cases, rhizobacteria trigger a different signalling pathway that does not require SA. The existence of a SA-independent ISR pathway has been demonstrated in Arabidopsis thaliana. In contrast to pathogen-induced SAR, ISR induced by Pseudomonas fluorescens WCS417r is independent of SA accumulation and pathogenesis-related (PR) gene activation but, instead, requires responsiveness to the plant hormones jasmonic acid (JA) and ethylene. Mutant analyses showed that ISR follows a novel signalling pathway in which components from the JA and ethylene response are successively engaged to trigger a defensive state that, like SAR, is controlled by the regulatory factor NPR1. Interestingly, simultaneous activation of both the JA/ethylene-dependent ISR pathway and the SA-dependent SAR pathway results in an enhanced level of protection. Thus combining both types of induced resistance provides an attractive tool for the improvement of disease control. This review focuses on the current status of our research on triggering, signalling, and expression of rhizobacteria-mediated ISR in Arabidopsis.  相似文献   

16.
Recent studies have indicated that the phytohormone abscisic acid (ABA), induced in response to a variety of environmental stresses, plays an important role in modulating diverse plant–pathogen interactions. In Arabidopsis thaliana, we previously clarified that ABA suppressed the induction of systemic acquired resistance (SAR), a plant defense system induced by pathogen infection through salicylic acid (SA) accumulation. We investigated the generality of this suppressive effect by ABA on SAR using tobacco plants. For SAR induction, we used 1,2-benzisothiazole-3(2H)-one 1,1-dioxide (BIT) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) that activate upstream and downstream of SA in the SAR signaling pathway, respectively. Wild-type tobacco plants treated with BIT or BTH exhibited enhanced disease resistance against Tobacco mosaic virus (TMV) and tobacco wildfire bacterium, Pseudomonas syringae pv. tabaci (Pst), however, which was suppressed by pretreatment of plants with ABA. Pretreatment with ABA also suppressed the expression of SAR-marker genes by BIT and BTH, indicating that ABA suppressed the induction of SAR. ABA suppressed BTH-induced disease resistance and pathogenesis-related (PR) gene expression in NahG-transgenic plants that are unable to accumulate SA. The accumulation of SA in wild-type plants after BIT treatment was also suppressed by pretreatment with ABA. These data suggest that ABA suppresses both upstream and downstream of SA in the SAR signaling pathway in tobacco.  相似文献   

17.
The idea that plants might be able to develop a form of acquired immunity to infection following exposure to a pathogen has been current ever since discovery of the animal immune system in the later years of the nineteenth century. Early attempts to demonstrate a comparable system in plants focused on the detection of precipitating antibodies and hence were doomed to failure. Nevertheless, largely anecdotal evidence for plant immunisation continued to accumulate, culminating in the discovery of phytoalexins in the 1940s. Convincing evidence for systemic changes in plant resistance following an inducer inoculation was not available until 20 years later, when pioneering work on tobacco infected with blue mould (Peronospora tabacina) or tobacco mosaic virus (TMV) showed that tissues remote from the inoculation site were altered in disease reaction type. Increased resistance was expressed as a reduction in lesion numbers and size, and a reduced rate of pathogen reproduction. Systemic acquired resistance (SAR) has now been demonstrated in at least 20 plant species in at least six plant families, although detailed genetic or molecular analysis has mainly been confined to a few models, such as tobacco, cucumber and Arabidopsis. SAR is associated with the coordinate induction of genes encoding defence proteins which can be used as molecular markers of the response. The availability of Arabidopsis mutants altered in the induction and expression of SAR is now providing new insights into the signal transduction pathway(s) involved, and will enable comparison with the molecular mechanisms operating in other plant taxa. Important unresolved questions concern the nature of the translocated signal, the mechanism of defence ‘priming’, efficacy of the response against different pathogens, and practical exploitation of SAR in crop protection. The first generation of chemical plant defence activators is now commercially available and optimal use of these SAR inducers in integrated disease control requires further evaluation. The prospects for engineering transgenic crops altered in the regulation or expression of SAR is also a subject for further investigation. © 1999 Society of Chemical Industry  相似文献   

18.
Root colonization by rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to systemic acquired resistance induced by a localized pathogen infection. We used the tobacco–tobacco mosaic virus model to investigate whether the systemic resistance induced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 is mediated by the systemic acquired resistance signal transduction pathway. Experiments with nahG-transformed tobacco revealed that Pseudomonas aeruginosa 7NSK2-induced resistance depended on in planta salicylic acid accumulation for its expression but not for its induction and is, in this respect, similar to systemic acquired resistance. However, Pseudomonas aeruginosa 7NSK2-induced resistance was, unlike systemic acquired resistance, not associated with PR1a expression at the time of challenge with tobacco mosaic virus. This suggests that Pseudomonas aeruginosa 7NSK2 treatment would only potentiate defense gene expression in systemic tissue, which would also explain why its level of resistance is lower than in case of systemic acquired resistance. Because we demonstrated that induced resistance by Pseudomonas aeruginosa 7NSK2 exclusively depends on the production of salicylic acid by this strain our conclusions might also account for other salicylic acid-producing and resistance-inducing rhizobacteria.  相似文献   

19.
In cucumber, we show salicylic acid only induce local acquired resistance (LAR), whereas acibenzolar-S-methyl (ASM) can induce LAR and systemic acquired resistance (SAR) to plant diseases. Jasmonic acid (JA) can induce local acquired susceptibility (LAS) and systemic acquired susceptibility (SAS). ASM treatment of lower first leaves leads to the accumulation of cucumber acidic class III chitinase (CHI2) in untreated upper leaves and effectively suppresses lesion formation on those leaves. In contrast, JA treatment completely suppresses CHI2 gene expression and causes plants to be more susceptible to Colletotrichum orbiculare. ASM-induced SAR can effectively antagonize the JA-induced SAS, providing a response that is midway between what would be expected with either JA or ASM by themselves.  相似文献   

20.
内生细菌EBS05对烟草诱导抗性的信号转导途径研究   总被引:2,自引:0,他引:2  
 樟树内生枯草芽胞杆菌EBS05是一株对多种植物病原菌具有较强拮抗活性,并能诱导烟草系统抗性的生防菌株。本文以缺失Surfactin A合成相关基因的突变菌株EBS05T为材料,研究了内生细菌EBS05对烟草诱导系统抗性的激发子及其信号转导途径。结果表明,菌株EBS05产生的Surfactin A是诱导烟草对TMV系统抗性的有效激发子;Surfactin A诱导处理后,SA信号转导途径下游的关键调节基因NPR1首先被激活,并持续超量表达,进而触发PR1bPR1a基因持续超量表达,表明Surfactin A诱导烟草对TMV的系统抗性是通过激活SA信号转导途径实现的。同时,Surfactin A诱导处理后24~72 h,JA/ET信号转导途径调节基因PDF1.2被激活,且超量表达,表明在Surfactin A诱导烟草对TMV系统抗性的信号转导过程中,可能存在SA信号途径和JA/ET信号途径的交叉协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号