首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了获得养殖废水中高效脱氮的菌株,采用富集培养分离的方法,从猪粪水自然曝气池污水中筛得一株具有较好脱氮功能的异养硝化-好氧反硝化菌株ZF2-3,经形态学和生理生化鉴定、16S rRNA基因序列分析、系统发育树构建和特征性扩增片段分析,鉴定其为Bacillus subtilis。在分别以硫酸铵和硝酸钠为唯一氮源的人工废水培养基中,菌株ZF2-3对氨氮和硝态氮的去除率分别为85.7%和87.2%,且不积累中间产物。优化条件后发现,菌株ZF2-3脱除氨氮最适碳源是蔗糖,最适碳氮比为15。将菌株ZF2-3应用于养殖废水脱氮,发现无论在氨氮浓度相对较低的水产养殖废水还是氨氮浓度较高的猪粪废水中,菌株ZF2-3均有较好的处理效果,使水体氨氮、总氮浓度分别降低37.7%、67.4%和34.6%、30.4%,且无中间产物累积。研究表明,菌株ZF2-3对养殖废水脱氮具有良好的应用潜力。  相似文献   

2.
针对目前大部分除氮微生物遇冬季低温难以对污水进行有效脱氮的问题,从冬季水浸稻田土壤中分离到1株在10~15 ℃下具有高效异养硝化好氧反硝化能力的菌株D15。经鉴定,确定该菌株为嗜碱假单胞菌(Pseudomonas alcaliphila)。考察了氮源质量浓度(100、150、200、250、300、400、600、800 mg/L),碳源种类(柠檬酸三钠、丁二酸钠、乙酸钠、草酸钠、麦芽糖),摇床转速(130、150、170、190、210 r/min),培养温度(5、10、15、20、25、30、35 ℃)对菌株D15除氮效果的影响。结果表明,菌株D15在以柠檬酸三钠为碳源、初始氮源质量浓度150 mg/L、摇床转速190 r/min、15 ℃条件下培养,对氨氮、硝氮及亚硝氮的去除率均达到了100.0%。在猪粪废水中添加柠檬酸三钠、15 ℃下分别处理54 h和66 h后,对氨氮和总氮的去除率分别达到100.0%和88.8%。  相似文献   

3.
从养殖池塘底泥中分离出1株异养硝化-好氧反硝化菌,对其进行生理生化鉴定、最佳脱氮条件确定及与活性污泥共同作用下的脱氮性能研究.经过菌株生理生化特性鉴定及查伯杰氏手册确定该菌株为非发酵、无芽孢的革兰阴性菌,初步鉴定为不动杆菌,且同时具有硝化和反硝化的特性.利用正交试验研究其脱氮性能的影响因素和最佳条件,结果表明:在以琥珀酸钠为唯一碳源,C/N为8,接种量为10 mL/L,pH为8,转速为75 r/min的培养条件下,该菌株对TN的降解效果最佳,降解率为98%;在以琥珀酸钠为唯一碳源,C/N为8,接种量为10 mL/L,pH为6.5,转速为120 r/min的培养条件下,该菌株对COD的降解效果最佳,降解率为99%.在对实际污水的脱氮处理中,该菌株脱氮性能很强并可加强活性污泥的脱氮性能,具有一定的实用性.  相似文献   

4.
[目的]鉴定1株异养硝化-好氧反硝化神户肠杆菌,明确其脱氮特性。[方法]从养殖池塘底泥中筛选到1株异养硝化-好氧反硝化菌HD-NAH,经形态学观察、生理生化试验以及16S rDNA序列分析,鉴定为神户肠杆菌(Enterobacter kobei)HD-NAH,并研究其脱氮特性。[结果]该菌在以柠檬酸钠为碳源,C/N为18,初始pH为7,温度为27℃,转速为190 r/min时,24 h亚硝氮(NO2--N)和总氮(TN)降解率分别为99.98%和89.37%,具有较高的降解效率。菌株在初始pH为7~10,温度为27~37℃,转速为130~210 r/min时,对NO2--N和TN的降解率均较高,表明该菌株的环境适应性较强。在不同氮源条件下,菌株HD-NAH对氮的去除存在差异,其对TN去除率表现为NO2--N>NH4+-N+NO2--N>NH+  相似文献   

5.
采用一体化SBR反应器处理废水,研究溶解氧(DO)和水力停留时间(HRT)对系统同步硝化反硝化脱氮的影响.结果表明:进水NH3-N浓度在45 mg/L左右,COD在450~500 mg/L,pH值为7.2~8.5,MLSS在4 500 mg/L左右的情况下,DO控制在0.5~1.5 mg/L时TN去除率最大值达到69.62%,DO值过高或过低都会影响同步硝化反硝化的顺利进行.其他操作条件相同,DO在1 mg/L左右,HRT控制在7 h时TN的去除率最高达到71.53%.  相似文献   

6.
异养型同步硝化反硝化处理氨氮废水及群落结构分析   总被引:1,自引:0,他引:1  
从生物陶粒反应器中筛选出6株异养硝化细菌,采用乙酸钠-氯化铵培养基培养细菌进行硝化特性研究.经过12 d好氧培养,6株异养硝化细菌对COD的去除率在45%以上,总氮和氨氮最终去除率在60%以上,并且具有产生NOx--N的硝化性能.采用污泥驯化手段富集好氧反硝化细菌,将得到的驯化污泥分离纯化,共得到5株高效好氧反硝化细菌(f1、f2、f3、f5、f7),他们对总氮(TN)的去除率分别为90.4%、91.2%、94.6%、95.6%、97%,表现出较好的总氮去除能力.将6株异养硝化细菌和5株好氧反硝化细菌扩大培养后,建立SBR反应器进行氨氮去除的试验研究.PCR-DGGE图谱表明,在反应器运行的不同时期,微生物群落结构发生动态演替.在反应器稳定运行期间,筛选的异养硝化细菌wgy5,wgy21,好氧反硝化细菌d5和Pseudomonas sp.的细菌是系统的优势菌群.  相似文献   

7.
王有乐  雷兴龙  王亚变  杨勤 《安徽农业科学》2010,38(10):5294-5296,5300
好氧反硝化菌是一类可利用好氧反硝化酶,在有氧条件下进行反硝化作用的细菌。与传统的细菌缺氧反硝化脱氮相比,利用好氧反硝化菌发展好氧脱氮技术具有独特优势。笔者就好氧反硝化菌间歇曝气法、酸碱指示剂法、呼吸抑制剂法、选择性培养基法、滴加试剂法、极限稀释法和综合筛选法等筛选方法及其机理,进行了系统综述,并对其未来的研究趋势进行了展望。  相似文献   

8.
9.
10.
由黑曲霉Y3(Aspergillus niger Y3)形成的菌丝球经过生物絮凝剂改性强化后作为生物载体固定好氧反硝化菌T13(Pseudomonas sp.T13),对其固定前后对全氮的去除效能、菌群的活性进行研究并分析固定化对于生物强化脱氮效果的影响.结果表明,菌丝球负载T13后去除全氮效能得到了明显的提高.当改性...  相似文献   

11.
林娜  郭楚玲  郭延萍  柯林 《安徽农业科学》2011,39(16):9765-9767,9796
[目的]研究具有好氧反硝化特性的异养硝化细菌NYMO和NYTE同时进行硝化和反硝化作用的能力及好氧反硝化菌HWTT的产物N2O逸出量情况。[方法]通过NH4+-N和NO3--N的质量浓度的变化情况来分析细菌硝化作用和反硝化作用的能力,采用空气密封摇瓶培养和额外补充O2保证好氧条件的2种方式培养菌株HWTT。[结果]菌株NYMO和NYTE 2 d内NH4+-N去除率为34.60%和35.08%,NO3--N去除率为33.40%和99.92%[结论]NYMO和NYTE具有异养硝化好氧反硝化能力。缺氧条件下,N2O逸出量最高值为0.15μmol,N2O/(N2O+N2)低于0.15%;好氧条件下,N2O逸出量为35.71μmol,N2O/(N2O+N2)为70%以上。  相似文献   

12.
为了深入挖掘好氧反硝化菌株RWX31在农业面源污染治理中的应用价值,通过纯培养试验研究在不同NO3-N浓度负荷和C/N条件下的该菌反硝化脱氮效率,并利用该菌株强化小型反应器(4L)中模拟废水(硝态氮浓度为200 mg·L-1)的脱氮效果。结果表明,相比于对照菌株ACCC01047,RWX31菌株可以耐受更高的硝态氮污染负荷(200~400 mg·L-1)和更低的C/N(6~10)。利用菌株强化反应器对污染废水的处理,在水力停留时间为24 h情况下,投加菌株RWX31对NO3-N污染废水的去除率为80%左右  相似文献   

13.
对自行设计的连续流活性污泥和生物膜反硝化除磷脱氮系统的除磷脱氮效果进行了研究,并对该系统的反硝化聚磷菌(Denitrifying phosphate bacteria,DPB)进行了分离鉴定,以及反硝化聚磷菌富集.结果表明,当进水总磷为6~10 mg/L,总氮为30~35 mg/L,氨氮为25~30 mg/L,化学需氧量(Chemical oxygen demand, COD)为150~250 mg/L时,系统出水总磷、总氮、氨氮和COD分别为0.65 mg/L、12.6 mg/L、3.8 mg/L和34 mg/L,出水达到国家排放标准;系统中DPB以不动杆菌属(Acinetobactor)、肠杆菌科(Enterobacteriaceae)、假单胞菌属(Pseudomonas)、葡萄球菌属(Staphylococcus)和副球菌属(Paracoccus)为主,其中琼氏不动杆菌(A. junii)是一类新的反硝化聚磷菌;当系统运行至第167 d时,系统中DPB所占比例为质量分数94%;经系统反硝化聚磷菌富集后,聚磷菌的种类集中.  相似文献   

14.
以一株脱氮副球菌(Paracoccus denitrificans)为试验菌株,研究了其在好氧环境下的最适生长条件以及在不同溶氧条件下对NO2ˉ-N、NO3ˉ-N的转化去除情况.结果表明,脱氮副球菌好氧下的最适生长温度为30℃,最适生长pH值为7.0.在溶解氧比较充足的情况下(6.6~7.3 mg· L-1),脱氮副球菌对NO2ˉ-N、NO3ˉ-N的去除以同化吸收为主,少部分是经由反硝化作用去除,最大去除率可达100%和97.58%.随着溶氧的降低,脱氮副球菌的反硝化能力增强,NO2ˉ-N、NO3ˉ-N通过反硝化作用去除的比例增加.将活菌数≥109个·mL-1的脱氮副球菌按1.0、2.5 mg·L-1的浓度加入养殖水体,在10d内可使养殖水体中的NH4+-N下降41.89%~49.23%,NO2ˉ-N下降33.33%~42.86%,NO3ˉ-N下降48.28%~67.74%,对养殖水体中的氮素污染具有较好的控制效果.研究显示,脱氮副球菌的好氧反硝化作用可以为养殖水体有氧条件下的脱氮提供一条新的思路.  相似文献   

15.
对自行设计的连续流活性污泥和生物膜反硝化除磷脱氮系统的除磷脱氮效果进行了研究,并对该系统的反硝化聚磷菌(Denitrifying phosphate bacteria,DPB)进行了分离鉴定,以及反硝化聚磷菌富集.结果表明,当进水总磷为6~10 mg/L,总氮为30~35 mg/L,氨氮为25~30 mg/L,化学需氧量(Chemical oxygen demand,COD)为150~250 mg/L时,系统出水总磷、总氮、氨氮和COD分别为0.65 mg/L、12.6 mg/L、3.8 mg/L和34m  相似文献   

16.
王李宝  万夕和  沈辉 《安徽农业科学》2006,34(22):5879-5881,5906
比较了异养硝化作用与传统自养硝化作用,结果表明:异养硝化作用不仅客观存在,而且某些特殊的异养细菌能同步进行异养硝化和好氧反硝化,在养殖水体水质改善方面具有广泛的应用前景。  相似文献   

17.
从渤海某海水养殖场(北美白对虾)底泥中分离到1株耐盐高效好氧反硝化细菌MCW148,经过对其形态特征、生理生化以及16S r DNA序列分析,将该菌株初步鉴定为巨大芽孢杆菌(Bacillus megaterium)。进一步研究表明,菌株MCW148的最适碳源为葡萄糖,最适培养温度为35℃,最适pH为6。在最适条件下,菌株MCW148在12 h对NO3--N的去除率为62.4%。  相似文献   

18.
反硝化聚磷菌C18脱氮除磷特性研究   总被引:2,自引:0,他引:2  
从城市生活污水处理厂好氧池活性污泥中筛选出的一株反硝化聚磷菌C18,经16S rDNA初步鉴定为假单胞菌(Pseudomonas grimontii)。C18在pH 6.5~7.5之间能正常生长,pH为7.5时,脱氮除磷效果最好。C18生长对温度没有特殊要求,当温度为30℃时,磷和氨氮去除率分别达到85.9%和83.6%。厌氧/缺氧最佳连续培养时间为厌氧2 h、缺氧4 h。  相似文献   

19.
采用紫外诱变法对好氧反硝化菌A762进行诱变处理,根据显色圈大小(G)与菌落直径(c)之比,初筛得到8株突变菌,再根据脱氮效果,从中复筛出1株总氮(TN)去除率最高的突变株B25,并对其好氧反硝化性能进行了研究.结果显示:紫外诱变96h后,在好氧条件下,相对于原菌株A762,菌株B25具有更好的生长优势,对NO3--N去除率达到90%以上,远高于原菌的22.201%;能短时间内去除积累的亚硝态氮,TN去除率提高到84.627%,比原菌株A762提高了60.071%.在反硝化过程中,培养液pH值逐渐上升,而氧化还原电位(ORP)逐渐降低.虽然诱变株B25有较强的反硝化活性,但还要进一步研究其在养殖水体中的脱氮效果,以便能得到实际应用.  相似文献   

20.
【目的】筛选出能够耐高氨氮的异养硝化-好氧反硝化菌株,并研究菌株的脱氮特性和污水脱氮应用潜力。【方法】从渗滤液中富集筛选出耐高氨氮的异养硝化-好氧反硝化菌株;筛选菌株在不同初始氨氮质量浓度、碳源、碳氮比、pH条件下的最适脱氮条件,探究该菌株的脱氮特性和应用潜力。【结果】筛选出一株耐高氨氮的异养硝化-好氧反硝化菌株BJ17;经过形态学、16S rRNA基因序列比对,确定菌株BJ17为水生产碱菌Alcaligenes aquatilis;该菌株最适脱氮条件为初始氨氮质量浓度为1 000 mg/L、碳源为柠檬酸三钠、碳氮比为8、pH9,其氨氮去除率为90.92%,总氮去除率为83.4%。检测到菌株的氨单加氧酶、羟胺氧化酶、硝酸盐还原酶和亚硝酸盐还原酶活性。在实际污水处理中,9 h将市政污水的氨氮全部去除;在垃圾渗滤液脱氮试验中,添加柠檬酸三钠,216 h可将含量4 758.06 mg/L的氨氮去除61.38%。【结论】菌株BJ17是一株能耐高氨氮的异养硝化-好氧反硝化作用菌株,且在高氨氮污水处理中具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号