首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

2.
Summary A set of 105 European wheat cultivars, comprising 68 cultivars with known seedling resistance genes and 37 cultivars that had not been tested previously, was tested for resistance to selected Australian pathotypes of P. triticina in seedling greenhouse tests and adult plant field tests. Only 4% of the cultivars were susceptible at all growth stages. Twelve cultivars lacked detectable seedling resistance to leaf rust, and among the remaining cultivars, 10 designated genes were present either singly or in combination. Lr13 was the most frequently detected gene, present in 67 cultivars, followed by the rye-derived gene Lr26, present in 19 cultivars. Other genes present were Lr1, Lr3a, Lr3ka, Lr10, Lr14a, Lr17b, Lr20 and Lr37. There was evidence for unidentified seedling resistance in addition to known resistance genes in 11 cultivars. Field tests with known pathotypes of P. triticina demonstrated that 57% of the cultivars carried adult plant resistance (APR) to P. triticina. The genetic identity of the APR is largely unknown. Genetic studies on selected cultivars with unidentified seedling resistances as well as all of those identified to carry APR are required to determine the number and inheritance of the genes involved, to determine their relationships with previously designated rust resistance genes, and to assess their potential value in breeding for resistance to leaf rust.  相似文献   

3.
Host resistance is the most economical means to reduce yield losses caused by wheat leaf rust. Knowledge of the effective specific resistance genes is a prerequisite for analysis of the non-specific components of resistance, assumed to be more durable than specific resistance. Lr genes were inferred from seedling response phenotype of 275 wheat cultivars and 21 standard isolates of Puccinia triticina. Enough cultivars were selected for analysis so that findings would account for at least two-thirds of the French agricultural land dedicated to wheat from 1983 to 2007. In this paper, genes Lr13, Lr37, Lr10, Lr14a, Lr3, Lr26, Lr1, Lr24, Lr20 are postulated, alone or in combinations, in, respectively, 67%, 45%, 34%, 20%, 8%, 7%, 6%, 1%, and 1% of the cultivars. Forty five phenotypic arrays were found, the most frequent being (Lr10, Lr13, Lr37) and (Lr13) in 45 and 37 cultivars, respectively. Over the period, the combinations became increasingly complex. Isolates with virulence corresponding to most of the Lr gene combinations were identified in the pathogen population, except for combinations involving Lr24 and some unidentified genes. These findings will help breeders and extension service staff (Arvalis) in diversifying sources of resistance to wheat leaf rust. This information is also crucial for research programs aiming, on the one hand, to identify sources of quantitative resistance, and, on the other hand, to quantify selection pressure exerted on pathogen populations.  相似文献   

4.
The recessive adult plant resistance (APR) gene Lr48 in wheat was tagged with flanking random amplified polymorphic DNA (RAPD) markers. Markers S336775 in coupling and S3450 in repulsion with Lr48 were identified in wheat line CSP44. Tests of these markers on available Thatcher near-isogenic lines (NILs) detected the likely presence of Lr48 in TcLr25. A test of allelism of APR involving the cross TcLr25 × CSP44 indicated that Lr48 was present in both lines. A separate experiment on inheritance of resistance in an F2 population of TcLr25 × Agra Local confirmed the presence of a dominant seedling resistance gene (Lr25) and a recessive APR gene (Lr48) in TcLr25. This study demonstrated the value of molecular markers in identifying the presence of masked genes in genetic stocks where direct phenotyping failed to detect their presence.  相似文献   

5.
Brown rust or leaf rust is one of the most important diseases of wheat occurring almost in all wheat-producing regions and reduces crop yield. In order to produce resistant cultivars, it is necessary to identify resistance genes in different germplasms and combine them in (a) suitable stock(s). To identify the presence of the leaf rust resistance genes using STS and SCAR markers, 83 Iranian wheat genotypes, Lr near-isogenic lines in Thatcher (positive controls), and the cultivar Thatcher (negative control) were used. After growing plants in the greenhouse, DNA was extracted by SDS method. Following that, polymerse chain reaction was performed for the markers of the resistance genes Lr9, Lr26, Lr28, Lr34, and Lr35 which amplified 1,100, 1,100, 378, 150, and 900 bp bands, respectively. Based on the results, the resistance genes Lr9 and Lr35 were only present in the positive controls. The resistance gene Lr26 was only detected in four cultivars; Arta, Pishtaz, Shiroodi, and Falat, and the gene Lr34 was present in six cultivars (Akbari, Bam, Tajan, Khazar 1, Sistan and Niknezhad). The Lr28 primer amplified a band of the same size in all genotypes even the negative control and therefore the presence/absence of this gene could not be validated. These results indicate the necessity for designing a specific primer for Lr28. In general, only the genes Lr26 and Lr34 were present in some genotypes. The genes Lr9 and Lr35 were not present in this collection and as based on rust surveys, no virulence has been detected for Lr9 and Lr28, so they could be transferred to suitable lines from donor sources.  相似文献   

6.
Wheat leaf rust (LR), caused by the obligate biotrophic fungus Puccinia triticina (Pt), is a destructive foliar disease of common wheat (Triticum aestivum L.) worldwide. The most effective, economic means to control the disease is resistant cultivars. The Romanian wheat line Fundulea 900 showed high resistance to LR in the field. To identify the basis of resistance to LR in Fundulea 900, a population of 188 F2:3 lines from the cross Fundulea 900/‘Thatcher’ was phenotyped for LR severity during the 2010–2011, 2011–2012 and 2012–2013 cropping seasons in the field at Baoding, Hebei Province. Bulked segregant analysis and simple sequence repeat markers were used to identify the quantitative trait loci (QTLs) for LR adult‐plant resistance in the population. Three QTLs were detected and designated as QLr.hebau‐1BL, QLr.hebau‐2DS and QLr.hebau‐7DS. Based on the chromosome positions and molecular marker tests, QLr.hebau‐1BL is Lr46, and QLr.hebau‐7DS is Lr34. QLr.hebau‐2DS was derived from ‘Thatcher’ and was close to Lr22. This result suggests that Lr22b may confer residual resistance on field nurseries when challenged with isolates virulent on Lr22b, or another gene linked to Lr22b confers this resistance from ‘Thatcher’. This study confirms the value of Lr34 and Lr46 in breeding for LR resistance in China; the contribution of the QTL to chromosome 2D needs further validation.  相似文献   

7.
Variation for adult plant resistance in near-isogenic wheat lines carrying Lrl4b, Lrl4ab and Lr30 in a ‘Thatcher’ background indicated the possible presence of novel adult plant resistance genes effective against the Indian leaf rust population. Sixty-one wheats released for cultivation in India were grown in isolated nurseries. Each nursery was separately inoculated with one of four leaf rust pathotypes which had been selected to aid identification of resistance effective only in the adult plant stage. Seven distinct response groups were recognised and a minimum of six sources of adult plant resistance were postulated. In a group of 14 wheats, resistance was explained on the basis of the seedling response genes that were identified. Similar results for two years with pathotype 77-1 gave support to the reliability of field tests. Adult plant resistance (APR) sources were either race-specific or effective against all pathotypes used. Seedlings of cultivars with APR showed susceptible reactions. The possible presence of Lr34 in Indian wheats and its role in durable leaf rust resistance are discussed.  相似文献   

8.
56个小麦品种(系)的苗期和成株抗叶锈鉴定   总被引:1,自引:1,他引:0  
为了研究中国小麦品种中所携带的抗叶锈基因,对56个小麦品种(系)进行苗期接种推导其中所含有的抗叶锈基因,同时连续2年对供试材料进行田间成株抗叶锈鉴定。通过苗期基因推导结合分子标记辅助检测,结果表明,在36个小麦品种中共鉴定出Lr26、Lr34、Lr1、Lr2a、Lr11、Lr20、Lr30、Lr33和Lr44等9个抗叶锈基因,其中28个品种含有Lr26,Lr1和Lr20分别存在于6个品种中,4个品种含有Lr30,Lr11和Lr44各存在于2个品种中,Lr2a、Lr33和Lr34各自在1个品种中出现。经过2年的田间抗叶锈鉴定共筛选出46个慢锈品种。筛选到的这些苗期和成株抗病品种均可用于小麦持久抗叶锈品种的培育。  相似文献   

9.
J. A. Kolmer 《Euphytica》1992,61(2):123-130
Summary Leaf rust resistance gene Lr13 is present in many North American hard red spring wheat cultivars that have shown durable resistance to leaf rust. Fifteen pair-wise combinations of Lr13 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests, homozygous paired combinations of specific resistance genes with Lr13 had enhanced resistance relative to either parent to rust isolates that had intermediate avirulent infection types to the additional genes. In field tests, homozygous lines were more resistant than either parent if the additional leaf rust gene conditioned an effective level of resistance when present singly.  相似文献   

10.
D. Singh  R.F. Park  R.A. McIntosh 《Euphytica》2001,120(2):205-218
Multi-pathotype tests on 70 U.K. wheat cultivars permitted postulation of eight known seedling genes for resistance to Puccinia recondita f. sp.tritici either singly or in combinations. The most commonly detected gene was Lr13 (present in approximately 57% of cultivars), followed by Lr26 (22%), Lr37 (20%), Lr10 (17%), Lr17b (LrH) (10%), Lr1 (7%), Lr3a (6%) and Lr20(4%). This information permitted assessments of adult plant resistance (APR) in some cultivars, in field nurseries inoculated with pathotypes of P. recondita f. sp. tritici of known pathogenicities for characterized seedling resistance genes. APR was identified in eleven cultivars, including Avalon and Maris Ranger, which lacked detectable seedling resistance genes. The results provided a better understanding of specific resistances in the cultivars tested than was available from previous reports. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Leaf rust resistance gene Lr58 derived from Aegilops triuncialis L. was transferred to the hard red winter wheat (HRWW) cultivars Jagger and Overley by standard backcrossing and marker-assisted selection (MAS). A co-dominant PCR-based sequence tagged site (STS) marker was developed based on the sequence information of the RFLP marker (XksuH16) diagnostically detecting the alien segment in T2BS·2BL-2tL(0.95). STS marker Xncw-Lr58-1 was used to select backcross F1 plants with rust resistance. The co-dominant marker polymorphism detected by primer pair NCW-Lr58-1 efficiently identified the homozygous BC3F2 plants with rust resistance gene Lr58. The STS marker Xncw-Lr58-1 showed consistent diagnostic polymorphism between the resistant source and the wheat cultivars selected by the US Wheat Coordinated Agricultural Project. The utility and compatibility of the STS marker in MAS programs involving robust genotyping platforms was demonstrated in both agarose-based and capillary-based platforms. Screening backcross derivatives carrying Lr58 with various rust races at seedling stage suggested the transferred rust resistance in adapted winter wheats is stable in both cultivar backgrounds. Lr58 in adapted winter wheat backgrounds could be used in combination with other resistance genes in wheat rust resistance breeding.  相似文献   

12.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

13.
Leaf rust, caused by Puccinia triticina, is considered one of the most important diseases of wheat. In South Africa the genes Lr29, Lr34, Lr35 and Lr37 confer effective resistance to leaf rust, qualifying them for use in cultivar improvement. To study possible secondary effects of these genes, a collection of BC6 lines containing each of the genes singly, was evaluated for breadmaking quality. The recurrent parent Karee, and Thatcher NILs used as resistance donors in the primary crosses, as well as Thatcher, were included as checks. The presence of Lr29, Lr34, Lr35 and Lr37 caused a significant increase in flour protein and water absorption. For most of the other characteristics the NILs performed statistically similar to the recurrent parent. Some sib lines performed significantly better than others, emphasising the value of selecting for improved quality among backcross lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Adult plant resistance against Indian leaf rust race 77 and five of its highly virulent variants have been identified from 111 bread wheat cultivars originating from 12 countries. The adult plant resistance of only 16 of these cultivars is due to hypersensitive seedling or adult plant resistance genes. All others expressed nonhypersensitive type of resistance characteristic of the genes Lr34 and Lr46.Forty five of the 111 cultivars showed tip necrosis on flag leaves, a trait linked to the gene Lr34. Therefore, the nonhypersensilive type of resistance of these 45 cultivars is attributed to Lr34. The nonhypersensitive resistance of the remaining cultivars is likely to be due to the gene(s) different than Lr34. The reaction pattern of these 111 cultivars to six races suggests the presence of at least six to seven new hypersensitive adult plant resistance genes and at least three new hypersensitive seedling resistance genes. The known genes Lr10, Lr23 and Lr26 were detected frequently but these genes did not contribute towards the adult plant resistance of any of the 111 cultivars. Based on the presence of new genes for hypersensitive and nonhypersensitive type of resistance, the 111 cultivars have been classified into 31 diverse resistance groups. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Pathogenicity data from surveys of Puccinia triticina (formerly P. recondita f. sp. tritici) conducted in western Europe in 1995 were analysed to compare the structure of regional populations of the pathogen. Many of the populations differed in phenotypic diversity and pathotypic composition, even though they occurred within a single epidemiological unit, suggesting that local factors may influence the establishment and propagation of individual pathotypes in the regional populations. Neighbouring regions were more similar than distant regions, and all regions shared at least one pathotype, except populations in northern Italy and Scotland. A high degree of similarity was found between populations in northern France and Great Britain, providing strong evidence of free movement of inoculum between these regions. Resistance genes were postulated for a selection of 91 wheat cultivars, representing those most commonly grown in western Europe in 1995. Thirteen cultivars lacked detectable seedling resistance genes and the remaining 78 possessed from one to three resistance genes; those detected were Lr1, Lr3a, Lr10, Lr13, Lr14a, Lr17b, Lr20, Lr26 and Lr37. The most commonly detected resistance gene was Lr13, which was present singly or in combination with other resistance genes in 48 cultivars (53%). The gene Lr14a was detected in 18 cultivars, Lr26 was present in 16 cultivars. The role of host selection in the composition of the regional populations of P. triticina in western Europe in 1995 was difficult to assess on the basis of the results obtained, since virulence data were not available for Lr13 and Lr14a. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
There is worldwide interest in adult plant resistance (APR) because of greater durability of APR to the cereal rusts. Peruvian bread wheat genotype ‘CPAN (Coordinated Project Accession Number) 1842’ (LM 50–53) has shown leaf rust resistance in disease screening nurseries since its introduction in 1977. However, it is susceptible at the seedling stage to several Puccinia triticina (Pt) pathotypes including the widely prevalent 77‐5 (121R63‐1) that infects bread wheat. Inheritance studies showed that CPAN 1842 carried a dominant gene for APR to pathotype 77‐5, which was different from Lr12, Lr13, Lr22a, Lr34, Lr35, Lr37, Lr46, Lr48, Lr49 and Lr68, based on the tests of allelism; and from Lr67, based on genotyping with the closely linked SSR marker cfd71. This gene should also be different from Lr22b as the latter is totally ineffective against pathotype 77‐5. CPAN 1842 therefore appears to be a new promising source of leaf rust resistance. Also having resistance to stem rust and stripe rust, this line can contribute to breeding for multiple rust resistances in wheat.  相似文献   

17.
Summary An Agropyron elongatum-derived leaf rust resistance gene Lr24 located on chromosome 3DL of wheat was tagged with six random amplified polymorphic DNA (RAPD) markers which co-segregated with the gene. The markers were identified in homozygous resistant F2 plants taken from a population segregating for leaf rust resistance generated from a cross between two near-isogenic lines (NILs) differing only for Lr24. Phenotyping was done by inoculating the plants with pathotype 77-5 of Puccinia triticina. To enable gene-specific selection, three RAPD markers (S1302609, S1326615 and OPAB-1388) were successfully converted to polymorphic sequence characterized amplified region (SCAR) markers, amplifying only the critical DNA fragments co-segregating with Lr24. The SCAR markers were validated for specificity to the gene Lr24 in wheat NILs possessing Lr24 in 10 additional genetic backgrounds including the Thatcher NIL, but not to 43 Thatcher NILs possessing designated leaf rust resistance genes other than Lr24. This indicated the potential usefulness of these SCAR markers in marker assisted selection (MAS) and for pyramiding leaf rust resistance genes in wheat.  相似文献   

18.
Fifty-five spring bread wheat (Triticum aestivum L.) cultivars, mostly released between 1975 and 1991 in eight leaf rust-prone spring wheat growing regions of the former USSR, were tested in the seedling growth stage for reaction to 15 Mexican pathotypes of Puccinia recondita f. sp. tritici. In total, seven known and at least two unknown genes were identified, either singly or in combinations: Lr3 (7 cultivars), Lr10 (14), Lr13 (5), Lr14a (1), Lr16 (1), Lr23 (3); the unknown genes were identified in 14 cultivars. The first unknown gene could be either Lr9, Lr19, or Lr25; however, the second unknown gene in 9 cultivars was different from any named gene. Twelve of the 15 pathotypes are virulent for this gene, hence its use in breeding for resistance will be limited. The cultivars were also evaluated at two field locations in Mexico with two pathotypes in separate experiments. The area under the disease progress curve and the final disease rating of the cultivars indicated genetic diversity for genes conferring adult plant resistance. based on the symptoms of the leaf tip necrosis in adult plants, resistance gene Lr34 could be present in at least 20 cultivars. More than half of the cultivars carry high to moderate levels of adult plant resistance and were distributed in each region.  相似文献   

19.
Leaf rust caused by the fungus Puccinia triticina is one of the most important diseases of wheat (Triticum aestivum) worldwide. The use of resistant wheat cultivars is considered the most economical and environment-friendly approach in controlling the disease. The Lr38 gene, introgressed from Agropyron intermedium, confers a stable seedling and adult plant resistance against multiple isolates tested in Europe. In the present study, 94 F2 plants resulting from a cross made between the resistant Thatcher-derived near-isogenic line (NIL) RL6097, and the susceptible Ethiopian wheat cultivar Kubsa were used to map the Thatcher Lr38 locus in wheat using simple sequence repeat (SSR) markers. Out of 54 markers tested, 15 SSRs were polymorphic between the two parents and subsequently genotyped in the population. The P. triticina isolate DZ7-24 (race FGJTJ), discriminating Lr38 resistant and susceptible plants, was used to inoculate seedlings of the two parents and the segregating population. The SSR markers Xwmc773 and Xbarc273 flanked the Lr38 locus at a distance of 6.1 and 7.9 cM, respectively, to the proximal end of wheat chromosome arm 6DL. The SSR markers Xcfd5 and Xcfd60 both flanked the locus at a distance of 22.1 cM to the distal end of 6DL. In future, these SSR markers can be used by wheat breeders and pathologists for marker assisted selection (MAS) of Lr38-mediated leaf rust resistance in wheat.  相似文献   

20.
A total of 105 European wheat cultivars were assessed for seedling and adult plant resistance (APR) to stem rust using an array of Australian isolates of Puccinia graminis f. sp. tritici. Twenty-seven cultivars were susceptible at both seedling and adult plant growth stages. Twelve catalogued seedling stem rust resistance genes (Sr7b, Sr8a, Sr8b, Sr9b, Sr9g, Sr11, Sr15, Sr17, Sr29, Sr31, Sr36 and Sr38) were detected in the remaining cultivars, and 13 cultivars carried additional seedling resistance genes that could not be postulated with the isolates used. Low levels of APR to stem rust were found in the cultivars Artaban, Forno, Mec, Mercia, Pandas and Vlada. Although the genetic identity of this APR was not determined, it was clear that the only designated stem rust APR gene Sr2 was not present in any of the cultivars tested based on the absence of the linked traits seedling chlorosis and pseudo black chaff. One of these cultivars, Forno, is believed to carry the leaf rust APR gene Lr34, previously reported to be associated with improved resistance to stem rust. A detailed genetic characterisation of the APRs in these cultivars will be needed to understand their modes of inheritance and relationships with catalogued stem rust resistance genes. Such knowledge may help in developing cultivars with effective gene combinations that confer higher levels of protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号