首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Buried Late Holocene paleosols of the Nienshants historical monument at the junction of the Neva and Okhta rivers (St. Petersburg) have been studied. These soils developed from estuary deposits of the Littorina basin with abundant artifacts of the Neolithic and Early Iron ages (7–2 ka BP). The soil cover of the area consists of the mature dark-humus profile-gleyed soils on elevated elements of the mesotopography (3.0–3.5 a.s.l.) and dark-humus gley soils in the local depressions (2.0–2.6 m a.s.l.). The soils are characterized by the low to moderate content of humus of the fulvate-humate type. The beginning of humus formation in the dark-humus gley soil on the slope facing the Neva River is estimated at about 2600 yrs ago; for the darkhumus profile-gleyed soils of the studied paleocatena, at about 2000 and 1780 yrs ago; and for the darkhumus gley soil, at about 1440 years ago. Judging from the spore-pollen spectra, the development of these soils took place in the Subatlantic period under birch and pine-birch forests with the admixture of spruce and alder trees. The gleyed horizons of the buried soil at the depth of 1.6–1.2 m on the Neva-facing slope date back to the Late Subboreal period (2500–2600 yrs ago), when pine-birch-spruce forests were widespread in the area. The new data contribute to our knowledge of the environmental conditions during the Neolithic and Iron ages.  相似文献   

2.
《CATENA》2001,43(3):203-215
The carbonate profiles of Chernozems bear important information on soil processes and can be successfully used for paleoenvironmental reconstruction. In the Northern Caucasus region, Russia, carbonate profiles of Chernozems were compared under anthropogenic (irrigation) and natural changes of moisture regime. The results for irrigation served as the basis for understanding the response to natural climatic changes. A soil chronosequence, consisting of soils buried under archaeological mounds dated to >5000, 3800–4000 and 1600–1700 BP and modern surface soils, was studied in a similar way. The soils buried >5000 and 3800–4000 BP had distinctive migrational and segregational carbonate accumulations (CAs). The migrational forms occurred in the surface horizons and contained 89–92% calcite with the highest dissociation temperatures. In the soils buried 1600–1700 BP the carbonate profile was clearly defined in terms of migrational CAs; they occurred only in the deeper horizons, had no clear boundaries and were diffused throughout the soil mass. In the modern surface soils the migrational CAs have almost disappeared, and the segregational CAs have the largest halos of recrystallised carbonates. The values of δ13C for CAs in the soils buried >5000 and 3800–4000 BP were lighter than in the soils buried 1600–1700 BP and the modern surface soils (−10.6‰ to −9.9‰ and −9.6‰ to −8.8‰, respectively). We conclude that the climate of the region during the second half of the Holocene changed from relatively dry and warm in the Atlantic period (>5000 BP) to more humid and cooler in the early Subboreal (5000–4000 BP). Since 4000 BP the climatic conditions have remained relatively stable with some changes in moisture regime resulting from human activities in recent centuries.  相似文献   

3.
The paper describes approaches assessing the diversity of soils in Russia, as well as algorithms for quantitatively assessing the differentiation of soil bodies and covers. To assess soil diversity (or the degree of differentiation of parent rock materials into soil bodies and soil covers), two indices have been introduced: the vertical differentiation index (Ird) and the spatial lateral differentiation index (Ild (red)). These indices were computed based on the soil cover structure shown on the Soil Map of the Russian Federation on a scale of 1: 2.5 M within the spatial framework of the Map of Soil-Ecological Zoning of the Russian Federation on a scale of 1: 2.5 M. Based on the data obtained, the most complex soil covers and soil profiles on plains were identified at the boundary of the Boreal and Subboreal geographical belts in the zones of soddy-podzolic soils (umbric albeluvisols/umbric podzols) of the southern taiga and gray forest soils (albic luvisols/luvic greyic phaeozems) of deciduous forests characterized by widespread occurrence of dynamically mature soils, as well as in mountainous soil provinces of the Altai and Caucasus.  相似文献   

4.
Regional estimates of changes in soil organic carbon (SOC) pools during the historical period were obtained according to a unified approach for Kostroma (southern taiga) and Kursk (forest-steppe) oblasts. The potential pools of soil carbon were calculated with due account for the classification position of particular soils, their texture, and the character of natural vegetation. In the estimates of actual SOC pools, land use patterns and the age structure of forest stands were taken into account. It was shown that modern pools of organic carbon in the soils of Kostroma oblast are only 1–2% smaller than the potential pools; for the soils of Kursk oblast, this difference reaches 23–27%. Mean weighted values of the actual SOC contents in these oblasts decreased by 0.1–0.2 and 6.5–7.6 kg C/m2 in comparison with the potential SOC contents, respectively, which is related to their environmental specificity and to different types of land use at present and in the historical past.  相似文献   

5.
Background concentrations of Th and U in volcanic soils (Andosols) of Kamchatka are much lower than their clarkes in continental soils. The dose rate of gamma radiation above the soil surface (10–11.5 µR/h in the south and 8–9.5 [m]R/h in the north of Kamchatka Peninsula) is lower than the natural level of this index for the mountainous areas in the boreal zone of Russia. The natural radiogeochemical background of Kamchatka soils is controlled by the petrochemical composition of volcanic ash composing the mineral basis of Kamchatka soils. It is higher in the southern soil province, where soils develop from acidic ashes, in comparison with the northern province, with a predominance of soils developing from ashes of basic and intermediate composition. This agrees with Th and U clarkes for the corresponding types of volcanic rocks and explains the natural origin of the elevated radiogeochemical background in the southern part of Kamchatka as compared with its northern part. The soils of the northern province developing from relatively fresh volcanic ashes show a lower Th/U ratio as compared to the soils of southern Kamchatka because of higher uranium content in the newly deposited ashes.  相似文献   

6.
The composition and structure of aggregates from different agrogenic soils in the southern steppe zone of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1–2 and 3–5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus–clay plasma in the intraped zone)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.  相似文献   

7.
The results of investigation into the composition of stable carbon and nitrogen isotopes of organic matter in the soils developed within soil–sedimentary sequences in the central part of the Selenga Middle Mountains in the Late Glacial and Holocene are presented. In the past 15000 years, the organic matter of the investigated soils has only been formed from the biomass of C3 plants (without the participation of C4 plants). This is confirmed by the of δ13С values from–27.00 to–23.35‰. A combined analysis of the parameters of the organic matter (Сorg, Ntotal, C/N, δ13С, and δ15N) of soils formed in different periods makes it possible to assume that the isotopic composition of carbon and nitrogen reflects changes in the climate humidity during the Late Glacial and Holocene periods. The specified intervals of soil formation correspond to the climate humidification and stabilization of the surface owing to the development of dense vegetation. Aridization periods were characterized by the accumulation of sediments that buried soil horizons. The most pronounced stages of climate aridization occurred at the transition from the Late Glacial to the Holocene, from the Boreal to the Atlantic, and from the Atlantic to the Subboreal periods. The optimum soil-forming conditions existed in the periods of 11700–11000, 8800–6900, and 4700–1000 years ago, which is confirmed by the published data on the landscape-climatic changes in the adjacent areas in the past 15000 years.  相似文献   

8.
The humus status and CO2 production have been assessed in soils of natural and anthropogenic landscapes in southern regions of the Far East with different types of redox conditions. A higher production of CO2 is typical of burozems and soddy-eluvial-metamorphic soils with oxidative and contrast redox conditions. These are soils with medium or high humus content, high potential humification capacity, and medium enrichment with catalase. A decrease in the content of humus in the plow horizons of soils in agrogenic landscapes is revealed compared to their natural analogues. The studied soils mainly have humus of the fulvate–humate type. The fractions strongly bound to the mineral soil component prevail in humic acids. In waterlogged mucky-humus gley soils, the anaerobic conditions hamper the biological activity and transformation of organic matter, which favors its accumulation. A low production of CO2 is observed in soils with reducing conditions. To determine the differences between the CO2 emission parameters in soils of agrogenic and natural landscapes, monitoring studies should be extended.  相似文献   

9.
The changes in the properties of dark gray forest soil in the Ukrainian Western Forest-Steppe under the effect of long-term agricultural use in a grain-row crop rotation without fertilization and with the application of mineral and organomineral complex fertilizers have been studied. The changes in the morphological properties of the soil, the reaction of the soil solution, the total and exchangeable acidities, the total exchangeable bases, the degree of base saturation, and the content and reserve of organic carbon over a 50-year-long period of plowing have been studied using different methods. It has been found that the acidification of the upper layer was intensified and the content of organic matter and the degree of base saturation decreased during the period studied (1961–2010). The effect of the management practice on the evolution and dynamics of the soil degradation has been studied. It has been shown that the cultivation of soils without fertilization primarily resulted in a decrease in the humus content; the application of mineral fertilizers increased the acidity of the soils.  相似文献   

10.
《CATENA》2001,43(2):137-156
The aim of this paper is to explain soil genesis and spatial variability in the soil cover of a flat landscape in the southern part of Argentina's semiarid region. Soil survey data indicate random differences in the properties of soils lying within a few hundred meters of one another, as reflected in an intricate distribution pattern which cannot be explained by the climatic theory of soil genesis in a single pedogenetic cycle. This pattern is unrelated to the actual vegetation cover. The soil parent materials consist of a <2-m mantle of aeolian Holocene sediments overlying a thick plio-Pleistocene “tosca” layer (calcrete, caliche). The undulations in the tosca layer are indicative of a paleomicrorelief levelled up to the present surface after the deposition of the Holocene sediments. Soils with fine-textured sandy loess and strong development (Meridiano soil: A–Bw–Ck–2Ckm) occupied a higher position within paleomicrorelief of the tosca layer. Adjacent soils on border or intermediate positions of the petrocalcic paleosurface have more complex profiles with a relict calcic horizon (Vizcachera soil: A–C–2Ck–3Ckm) and coarser texture (silty clayey sand) in the topsoil. In the lower positions of the paleomicrorelief of the tosca layer, the silty clayey sand directly overlie the petrocalcic horizon (El Khazen soil: A–C–2Ckm). The intricate distribution pattern is due to the coexistence of older polypedon (Meridiano soil), remnants of an earlier erosion cycle complexed with two younger soils, one from partial erosion (Vizcachera soil) and the other where total erosion of earlier soils was followed by successive pulses of aeolian deposition (El Khazen soil). The distribution pattern of the three soils thus reflects a complex history involving at least three stages of landscape evolution.  相似文献   

11.
Data on soddy-podzolic soils with the second humus horizon in the southwestern part of Kirov oblast are discussed. These soils were first studied by the authors on mantle calcareous loams of the Yarano- Kokshagskaya Plain in the eastern part of the Central Russian southern-taiga province of medium-humus soddy-podzolic soils of European Russia. The aim of this study is to reconstruct the history of the development of soil properties and soil cover in automorphic landscapes of this region. Morphology, substantive properties of mineral and organic components, soil genesis and evolution are analyzed using a set of physical, chemical, physicochemical, biochemical, and geochronological methods. The results of our study attest to the relict character of second the humus horizon and polygenetic nature of the studied soils. These soils have passed through two essentially different evolutionary stages in the Holocene: the accumulative stage in the first half of the Holocene and the accumulative-eluvial stage of erasing evolution with preservation of some inherited features in the second half of the Holocene. According to their properties, the studied soils are analogous to the earlier studied southern-taiga Vyatka–Kama province of high-humus soddy-podzolic soils of the northeast. At present, plowing of these soils leads to a partial or complete destruction of the second humus horizon; thus, spontaneous degradation processes are complemented by the human-induced soil degradation. A tendency for a gradual disappearance of these soils from the soil cover under the influence of natural and anthropogenic factors has been noted. The materials presented in this paper may be useful for organization of specially protected soil areas in the southwestern part of the Vyatka River basin.  相似文献   

12.
It has been found that the total productivity of bacteria and micromycetes in the 0- to 50-cm layer of homogeneous cryozems (Cryosols) on slopes of northern and southern exposures varies from 1.2 to 1.4 t/ha, respectively, and the calculated content of microbial carbon varies in the range 0.7–0.9 t/ha. The respiratory activity of the upper soil layer is 2.5–2.6 μg C–CO2/(g h); the potential methane formation capacity reaches 0.13 nmol CH4/(m2 day) for soils on slopes of northern exposure and 0.16 nmol CH4/(m2 day) for slopes of southern exposure. Accumulation of sorbed ammonium is recorded in the range 15–17 mg NH4/100 g soil in summer. The increase of temperature in the upper horizons of soils on slopes of southern exposure by 5°C compared to the northern slopes results in only an insignificant increase in the emission of CO2 and CH4. The accumulation of sorbed ammonium and nitrate nitrogen in homogeneous cryozems during the vegetation period is comparable to that in gray forest soils of the southern taiga subzone of the Middle Siberia.  相似文献   

13.
The most favorable conditions for peat accumulation in Kamchatka existed during the Atlantic climatic optimum of the Holocene (5000–6000 yrs ago) and in the Boreal period (8000–9000 yrs ago). Less favorable conditions were in the Subboreal period. The growth of peat substrates in Kamchatka in the modern period is estimated at 1.1–1.5 mm/yr. During the earlier stage of the Subatlantic period (except for the last century), it comprised 0.1–0.3 mm/yr. The rate of peat growth in the Subboreal period varied within 0.03–0.08 mm/yr. During the Atlantic optimum, it increased up to 0.08–0.5 mm/yr. During the earlier stage of the Atlantic period, it comprised 0.06–0.2 mm/yr and, during the Boreal period, 0.1–0.6 mm/yr. The most significant variations in the rate of the peat accumulation in Kamchatka are related to changes in the climatic conditions of the peninsula from its western coast to its eastern coast.  相似文献   

14.
Paleosols buried under steppe kurgans of the Golden Horde period (13th–14th centuries AD) in the Lower Volga basin are characterized by an increased humus content, lower salinity and gypsum content, and higher magnetic susceptibility of the soil material in comparison with the paleosols buried in the preceding period and the background surface soils. A comparative analysis of the morphological, chemical, and magnetic properties of the buried and surface soils allows us to conclude that an increase in climatic humidity within this dry region took place in the period of the high Middle Ages, with a peak in the 13th–14th centuries AD. The climatic change was manifested in the soil evolution at the taxonomic levels of soil genera and soil subtypes (in the ecotone zones). On the basis of measured magnetic susceptibility values, the mean annual precipitation levels in the Golden Horde period have been reconstructed. According to our estimates, the mean annual precipitation in the Lower Volga basin in that time was 30–80 mm higher than at present. The favorable paleoenvironmental and paleosol conditions of the Golden Horde period were important factors that affected the ethnic and political situation in the Lower Volga region.  相似文献   

15.
The development of irrigation and the ameliorative status of irrigated lands in Rostov oblast are analyzed for a fifty-year-long period (1952–2001). Three stages of irrigation development are specified. The first stage (1952–1982) was characterized by poor operating conditions of irrigated lands. The second stage (1982–1990) was a period of the most intense irrigation and improvement of the ameliorative status of irrigated lands. The third period (1990–2001) was marked by a drop in the area of irrigated lands and exclusion of lands with unsatisfactory ameliorative status from irrigation. The natural and operating conditions of 18 irrigation systems allocated to areas with different lithological and geomorphic features and soils (chernozems, dark chestnut, meadow, alluvial, and other soils) are characterized. It is shown that soil irrigation often leads to the development of negative soil processes, such as salinization, alkalization, and waterlogging. They are related to the natural and operating conditions of irrigated systems. Secondary salinization and waterlogging are most active in irrigation systems used for rice growing independently of the natural conditions. Upon initially weak salinization of soils and rocks, secondary salinization and alkalization are slightly developed. In the secondary saline and solonetzic soils excluded from irrigation, residual solonetzic features are preserved for more than 15–20 years.  相似文献   

16.
Several series of well-developed paleosols of different ages have been examined on the Moskva River floodplain. In the beginning of the Holocene, forest-steppe biomes were widespread in this area, and dark-humus (Black) soils with stable humate humus and without features of textural differentiation predominated on the floodplain. The presence of meadow-steppe vegetation communities during this period is confirmed by the results of palynological and anthracological analyses. The lower paleosol in section RANIS 2 is represented by the deep humus horizon with 14C dates from 5500 to 8400 BP and the carbonate-accumulative horizon; it also contains large and deep tunnels of burrowing animals typical of chernozems. Wood charcoal is absent, and pollen of Artemisia and Chenopodium species predominates. Paleosols of the second half of the Holocene are represented by gray-humus and soddy-podzolic soils (Luvisols). In these soils and in the alluvial sediments, beginning from the Subboreal period, pollen of trees predominates; there are abundant charcoal of spruce and burnt spruce needles. In that time, forest-steppe and broadleaved forest biomes on the floodplain were replaced by southern taiga biomes. The second half of the Holocene is also specified by the human impacts on the local landscapes. Palynological and anthracological data attest to the large-scale burning of forests for pastures in the Bronze Age and, later, for cropland. The paleosol of the Iron Age is enriched in humus. It contains tunnels of burrowing animals related to the stage of anthropogenic meadows. It also contains pyrogenic calcite. The recent centuries have been characterized by extremely high floods triggered by the human activity; they have been accompanied by the fast accumulation of coarse-textured alluvial sediments and the formation of weakly developed alluvial soils.  相似文献   

17.
The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils (Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil (Luvic Phaeozem)), and forest-steppe (gray forest soil (Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.  相似文献   

18.
Specific features of soil formation in the taiga zone of Western Siberia are considered. The polygenetic nature of podzolic and gley-podzolic soils in the middle taiga zone, soddy-podzolic and soddy gley soils in the southern taiga zone, and meadow soils in the subtaiga zone is related to the pre-Holocene transformation of the lithogenic matrix upon activation of denudation and accumulation processes and the complicated Holocene evolution of these soils. A soil profile can be subdivided into separate layers according to the geomorphic features of the cryogenesis, the indices of interruption of soil formation, and the differences in the composition of the organic matter in the relict and modern humus horizons.  相似文献   

19.
The soil evolution in the depression of Lake Nero was driven by climate changes in the Holocene and by the history of the relief’s development in this region. In the Alleröd period, dark-colored soils were formed; in the Late Dryas period, they were cryoturbated and covered by colluvial deposits from the adjacent slopes. These specific paleosols are found on relatively high ancient surfaces. In the Early and Middle Holocene (10000–3700 BP), dark-colored horizons of soils with high stability of the organic matter were formed. The properties of humus in these soils are close to the properties of humus in forest-steppe soils. In the past 3500–3700 years, under conditions of some cooling and humidization of the climate with the development of taiga pedogenesis, these soils have evolved into soddy-podzolic soils. Their dark-colored horizons have degraded, though their lower parts are partly preserved in many places as the second humus horizons, the most distinctive feature of the soil polygenesis in the studied region. The soils of the low terrace (100–103 m a.s.l.) are younger than the soils of the higher and more ancient surfaces. Their evolution followed the same stages, though the Alleröd paleosols have not been found on this surface. In the coastal zone, at the heights below 97 m a.s.l., the soil formation began later, about 7000 years ago. Afterwards, the soils of this surface were subjected to the influence of fluctuations in the lake’s level. During the regression phase (7000–3500 BP), which corresponded to the dark-colored pedogenesis, these soils and the habitation deposits of the Bronze Age were formed on the dried bottom of the lake below its modern lake level of 93.2 m a.s.l. In the Late Holocene, these soils in the coastal zone were subjected to waterlogging rather than to podzolization due to the rise in the lake’s level; they have evolved into the soddy gley soils.  相似文献   

20.
土壤起源与宜居地球的形成   总被引:1,自引:0,他引:1       下载免费PDF全文
在各种成土因素交互作用下,地球土壤起源和演变历经变化的环境和多种成土过程。研究表明最早的古风化壳出现在太古宙;而随着地球生物演进,生物因素加入风化成土作用与成土过程,土壤学家眼中的土壤形成、发育于寒武纪。漫长的地质历史时期不同的成土环境发育有各种类型土壤,这些土壤发育与演化过程又反作用于景观、地形、生态系统、气候系统,改变大气成分组成和地球化学循环,影响、反馈、调节全球或地区的表层系统,土壤圈的形成是宜居地球形成的重要标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号