首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen from a growing follicle stimulates the preovulatory surge of luteinizing hormone (LH) while progesterone (P) is known to suppress LH. The possibility exists that administration of P, in the presence of an ovulatory follicle, would sufficiently suppress LH and, therefore, delay ovulation. The objective of this research was to elucidate the potential for oral administration of altrenogest (17-Allyl-17β-hydroxyestra-4,9,11-trien-3-one) to postpone ovulation of a preovulatory follicle (35 mm) for approximately two days. Fourteen light-horse mares, ranging in age from two to 19 years, were randomly assigned to one of three treatments (A-.044 mg/kg BW altrenogest for two days; B-.088 mg/kg BW altrenogest for two days; and C- no altrenogest). Mares began treatment when a 35-mm or greater follicle was observed via real-time transrectal ultrasonography. Both number of days until ovulation and follicular maintenance differed between treated and control mares. Number of days until ovulation was increased (P<.05) for mares in treatment A when compared with the control mares. Follicular diameter maintenance, a measurement of follicular diameter throughout treatment, also increased (P<.05) for mares in treatment A when compared with the control mares. Mean LH concentration was not different between mares treated with altrenogest at either treatment dose when compared with the control mares. Pregnancy rates and embryonic vesicle size change were also measured to determine potential effects of altrenogest administration. No differences (P>.05) were found in either characteristic.Short-term administration of altrenogest increased the number of days to ovulation. Further study is warranted to prove conclusively that altrenogest increases follicular maintenance, alters the preovulatory LH surge, and has no detrimental effects upon reproductive efficiency.  相似文献   

2.
3.
Objective To evaluate the fertility of mares bred at various intervals relative to surgical management of rectovaginal fistula (RVF). Materials and Methods Surgical repair of RVF was performed in 28 mares at variable times relative to foaling (30 days to 24 months) and also relative to rebreeding (same cycle or delayed). Postoperative fertility was then evaluated. Results Two mares were already pregnant at the time of surgery and 20 of 23 mares (87%) that were bred immediately prior to or following surgery conceived from their first service. When mares were bred in the same cycle as surgery, the next cycle following surgery or in the following breeding season after surgery the pregnancy rate was 5/5, 5/6 and 10/12, respectively, and the foaling rates were 4/5, 4/6 and 7/12. The two mares already pregnant at the time of surgery foaled successfully. Conclusions Excellent fertility can be achieved following surgical repair of RVF and our results suggest that delaying breeding until the following breeding season is not necessary. In addition, breeding in the same cycle as the surgical repair is a previously unreported technique that should be considered to maintain normal fertility and a yearly foaling interval.  相似文献   

4.
5.
Oral administration of altrenogest for oestrus suppression in competition horses is believed to be widespread in some equestrian disciplines, and can be administered continuously for several months during a competition season. To examine whether altrenogest has any anabolic or other potential performance enhancing properties that may give a horse an unfair advantage, we examined the effect of oral altrenogest (0.044 mg/kg), given daily for a period of eight weeks, on social hierarchy, activity budget, body-mass and body condition score of 12 sedentary mares. We concluded that prolonged oral administration of altrenogest at recommended dose rates to sedentary mares resulted in no effect on dominance hierarchies, body mass or condition score.  相似文献   

6.
Four seasonally anestrous mares (Standardbred), housed under a nonstimulatory photoperiod of 8 hours light:16 hours dark, were administered gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (50 or 250 micrograms of GnRH/hour) for 8 to 18 days during February and March 1985. Treatment with GnRH, irrespective of dose or month, induced an increase in serum luteinizing hormone from a mean pretreatment value typical of anestrus (0.58 +/- 0.02 ng/ml +/- SE) to 10.84 +/- 1.27 ng/ml on day 8 of GnRH treatment. Ovulation in the 4 mares occurred 8.8 +/- 0.7 days after the initiation of pulsatile GnRH administration. In each instance, ovulation was followed by a functional corpus luteum, as indicated by a luteal phase (defined as the number of days on which serum levels of progesterone were greater than 1.0 ng/ml) which lasted 14.5 +/- 0.6 days. These results indicate that infusion of GnRH in a pulsatile pattern is effective in inducing follicular development and ovulation in anestrous mares in the absence of a stimulatory photoperiod.  相似文献   

7.
8.
Oral administration of altrenogest for oestrus suppression in competition horses is believed to be widespread in some equestrian disciplines, and can be administered continuously for several months during a competition season. To examine whether altrenogest has any anabolic or other potential performance enhancing properties that may give a horse an unfair advantage, we examined the effect of oral altrenogest (0.044 mg/kg), given daily for a period of eight weeks, on social hierarchy, activity budget, body-mass and body condition score of 12 sedentary mares. It was concluded that prolonged oral administration of altrenogest at recommended dose rate to sedentary mares had no effect on dominance hierarchies, body-mass or condition score.  相似文献   

9.
Lactating mares were assigned as controls or fed altrenogest (.044 mg.kg body wt-1.d-1) for 15 d after foaling. Mares (n = 6) fed altrenogest were inseminated during the first estrus after treatment and mares (n = 6) in the control group were inseminated during the second postpartum estrus. Ovulation during the estrus in which mares were inseminated occurred 26 +/- 1 d postpartum for treated mares and 36 +/- 1 d postpartum for control mares. The percentage of mares conceiving was not different for control (67%) and alternogest-treated (100%) mares. No differences were observed in tone and size of the uterus or size of the ovulatory follicle between treated and control groups. Uterine cultures and biopsies collected on d 7 and 15 postpartum were similar between treatment and control groups in bacterial populations or endometrial epithelial cell height. Blood was collected on d 7, 11, 15, 19 and 23 postpartum, and concentrations of estradiol-17 beta in serum were determined by radioimmunoassay. Mean concentrations of estradiol-17 beta across days were 10 +/- .8 and 12 +/- .6 pg/ml for control and treated mares, respectively. Concentrations of serum estradiol-17 beta were higher (P less than .05) in treated mares on d 23 postpartum. Daily milk yields, determined by the weigh-suckle-weigh method, and milk composition were similar between treatment groups on each collection day. Altrenogest can be used to predictably delay estrus in the postpartum mare without altering fertility, yield and composition of milk, or foal growth.  相似文献   

10.
Fifty-one light-horse mares were utilized to evaluate the safety of an oral progestin, altrenogest, administered throughout gestation on: gestation length, embryonic and fetal loss, periparturient events, health and development of offspring, and future reproductive capabilities of the mares. Pregnancies were established by inseminating mares with 250 × 106 progressively motile spermatozoa from the same stallion every other day throughout estrus or by non-surgical transfer of embryos. Mares were randomly assigned to 1 of 2 treatments upon confirmation of pregnancy on day 20: 1) controls, 2 ml of neobee oil orally per 44.5 kg of body weight; and 2) treated, 2 ml of altrenogest dissolved in neobee oil at a concentration of 2.2 mg/ml orally per 44.5 kg of body weight. Treatments were administered daily from day 20 to 320 of gestation.There were no significant differences between treatment groups for duration of gestation, placental weight, time to placental expulsion and incidence of retained placental membranes. Number of female foals born from altrenogest treated mares (14 of 23) was greater (P<.05) than the number from untreated control mares (4 of 16). Female foals born from altrenogest treated mares had larger clitori (P<.05) than those from control mares. Times to sternal recumbency, standing and nursing were similar for the 2 groups (P>.05). Body weight and height at withers, heart girth circumference and length and width of cannon were measured at time of birth and at 2, 4, 6, 8, 12 and 16 weeks of age. Measurements did not differ (P>05) between treated and control foals for any development parameters.Beginning on day 20 postpartum, mares were teased daily. During estrus, mares were inseminated every other day with 250 × 106 motile spermatozoa. Teasing and/or insemination was continued for 2 cycles or until mares were 35 days pregnant. The number of mares pregnant after 1 cycle and after 2 cycles of insemination was similar (P>.05) for treated and control mares. Nineteen of 21 treated mares and 15 of 16 control mares were pregnant after 2 cycles of insemination. Number of cycles per pregnancy was similar (P>.05) for treated and control mares (1.37 vs 1.13) as was number of days mares exhibited estrus (6.30 vs 6.13). Number of inseminations per cycle did not differ (P>.05) between treated and control mares (2.92 vs 3.00). In summary, there was no effect of treatment with altrenogest from day 20 to 320 of gestation on periparturient events, viability and growth of offspring and subsequent reproductive performance of mares.  相似文献   

11.
Plasma progesterone levels were measured daily to determine the accuracy of diagnosing ovulation by rectal palpation carried out every other day; 81.5 per cent mares injected with human chorionic gonadotrophin showed increases of progesterone more than 1 ng/ml by 72 h after injection compared with 65 per cent of mares injected with gonadotrophin releasing hormone (GnRH) or saline. Mating at ovulation achieved a 74 per cent pregnancy rate in mares given hCG compared with 50 per cent given GnRH and 45 per cent controls. Diagnosis of ovulation per rectum on the basis of a pit in the ovarian surface or the presence of a soft friable structure was found to be accurate in 91 per cent of cases. Diagnosis based on the presence of a firm plum-like structure or the disappearance of a previously identified follicle at a given site was 60 per cent accurate. In cases of rectal diagnosis of non-ovulation 38 per cent had actually ovulated based on a rise in progesterone more than 1 ng/ml and a further 19 per cent showed a rise in progesterone by 24 h after the diagnosis. The use of hCG may improve conception rates by synchronisation of ovulation and mating and where rectal palpation of the ovaries remains the only basis for timed mating.  相似文献   

12.
Deslorelin acetate (Ovuplant™, Fort Dodge), a GnRH agonist, is commonly used to induce ovulation in cycling mares. Although its efficacy in hastening ovulation has been previously reported, the effects of age of mare and month of administration on percent of mares responding and interval to ovulation have not been studied.Data was gathered from reproduction records of 376 mares receiving deslorelin acetate at the Equine Reproduction Laboratory, Colorado State University, from 1995 to 1999. Age of mare, date of administration, size of largest follicle at treatment, and interval to ovulation were recorded. Age of mare was categorized into five groups: 2–4, 5–9, 10–14, 15–19, and greater than or equal to 20 years. Date of administration was divided into four groups: March and April, May and June, July and August, and September and October.A higher (p < 0.05) percentage of mares aged 10–14 (98.5%) ovulated in response to deslorelin acetate than mares aged 2–4 or 5–9 (90.2% or 91.0%, respectively) or mares aged 15–19 or ≥ 20 (87.9% or 83.8%, respectively). Mares ≥ 20 had the lowest ovulation rate (83.8%). However, mares ≥ 20 that responded to deslorelin acetate had a shorter (p < 0.05) interval from treatment to ovulation (1.7 ± 0.1 days) than mares 2–4 and 5–9 years of age (1.9 ± 0.1 and 1.9 ± 0.0 days, respectively).Deslorelin acetate was more effective in inducing ovulation in the July and August (95.4%) (p < 0.01) and September and October (95.7%) (p = 0. 04) than in the March and April (81.1%). Mares treated in May through October also experienced shorter (p < 0.05) intervals to ovulation than mares treated in March and April.  相似文献   

13.
In two herds that used different breeding and housing schemes, altrenogest (15 mg/d) was fed for 14 d to gilts or 10 d to sows in .45 kg of a diet formulated to meet or exceed their nutrient requirements. In Herd 1 (five breeding seasons per year), 63 of 123 gilts and 40 of 70 sows in seven replications were fed in individual crates to ensure proper intake. In Herd 2 (continuous breeding), 244 of 484 gilts in 20 replications received the treated feed in individual feeding stalls to which animals had free access. Average and median days to estrus were reduced (P less than .01) for treated gilts and sows compared with controls in both herds. Of 29 treated gilts that did not mate or become pregnant, three had cystic follicles, compared to 1 of 14 controls. There were no statistically significant treatment differences in litter size born or number of stillborn pigs in either herd, but farrowing rates of cycling gilts were 8% lower (P less than .05) in Herd 2 for treated gilts than for controls. Overall, altrenogest could be a valuable tool for improving reproductive efficiency by allowing producers to better control the estrous cycle.  相似文献   

14.
Recent findings on the origin and development of twins from ovulation (Day 0) to fixation (mean: Day 16) are reviewed. Available data show that almost all twins originate from multiple ovulations. Results of recent ultrasound studies indicate that the number of days between double ovulations does not affect the conception rate per ovum or embryo survival during the first 16 days after each ovulation. Embryo reduction is the natural elimination of excess embryos so that only one embryo enters the foetal stage. In two studies, embryo reduction before or on the day of fixation was not considered an important aspect of the natural correction of twins. Diameters and growth rates on Days 11 to 16 were similar between singletons and twins and the presence of two vesicles did not have a direct effect on their diameter other than that attributable to their age. Twin and singleton embryonic vesicles were mobile within the uterine lumen from the first day of detection (Days 9 to 11) to the day of fixation (mean: Day 16). In one study, the embryonic vesicles were in the uterine body for over 50 per cent of the time during Days 9 to 12 and thereafter were most often in the uterine horns. For twins of dissimilar size, the preference for uterine body versus horns appeared to be an independent function of each vesicle based on its age or size. After Day 12, the number of entries from the uterine body into the horns increased and the vesicles began a maximum mobility phase which continued until fixation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Milk and serum progesterone levels in mares after ovulation   总被引:1,自引:0,他引:1  
Twenty-four Finnhorse mares were examined by rectal palpation and ultrasonography every 6 h during late oestrus to determine the time of ovulation. Milk and serum samples were collected every 6 h after the detected ovulation for progesterone analysis. The progesterone rises took place within 0-54 h and 0-60 h after ovulation, in milk and serum, respectively. Statistically significant differences (p less than 0.05) in progesterone levels were observed for the first time 12-18 h and 18-24 h after ovulation, in serum and milk, respectively, as compared to progesterone levels 0-6 h after ovulation.  相似文献   

16.
Prostaglandins (PGs) are essential to trigger the cascade of events that degrade the extracellular matrix of follicles leading to follicular rupture and ovulation. In mares, systemic administration of flunixin meglumine (FM), a PG synthetase inhibitor, blocks ovulation by inducing luteinized unruptured follicles (LUF). In the rat, the administration of PGF(2α) (PGF) and PGE restored ovulation in indomethacin treated animals. The mares were treated with FM 0, 12, 24 and 36 h after human chorionic gonadotrophin (hCG) administration to induce experimentally LUF (n = 15) or were left untreated (controls, n = 5). In addition, 250 μg of cloprostenol were administered intravenously to the mares 33, 35 and 36 h (CLO 33, n = 5) or 48, 49 and 50 h (CLO 48, n = 5) after hCG. One group was treated with FM but not with cloprostenol (FM-control, n = 5). The ovulation rate, follicular diameter and progesterone concentration were compared amongst groups. The ovulation rate at 48 h was higher (p < 0.05) in the controls (100%) than in the FM-control (0%), CLO 33 (0%) or CLO 48 (20%) mares. All but one FM treated mares developed LUF by 48 h after hCG administration. Two LUF collapsed between 48 and 60 h and 72 and 84 h in one mare from FM-control and from the CLO 33 group each, respectively. Progesterone concentration was significantly higher (p < 0.05) in the control mares than in any of the FM treated mares 5, 9 and 13 days after hCG. In conclusion, FM administered during the periovulatory period blocked ovulation in the mares. In contrast, the administration of cloprostenol, a PGF analogue, in the previously FM treated mares failed to restore ovulation.  相似文献   

17.
18.
Discomfort manifested by colic-like clinical signs in 2 young mares was presumed to be attributable to ovarian pain associated with follicular enlargement and ovulation. Diagnosis was based on the lack of detectable evidence of gastrointestinal disease, the finding of a large ovarian follicle or recent ovulation, the repetition of signs during several subsequent estrual periods, and the clinical response to pharmacologic suppression of estrus and ovulation. The similarity of the clinical signs in these 2 mares to cyclic intermenstrual pain in women was considered.  相似文献   

19.
20.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号