首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.  相似文献   

2.
During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.  相似文献   

3.
Within distances to Uranus of about 6 x 10(6) kilometers (inbound) and 35 x 10(6) kilometers (outbound), the planetary radio astronomy experiment aboard Voyager 2 detected a wide variety of radio emissions. The emission was modulated in a period of 17.24 +/- 0.01 hours, which is identified as the rotation period of Uranus' magnetic field. Of the two poles where the axis of the off-center magnetic dipole (measured by the magnetometer experiment aboard Voyager 2) meets the planetary surface, the one closer to dipole center is now located on the nightside of the planet. The radio emission generally had maximum power and bandwidth when this pole was tipped toward the spacecraft. When the spacecraft entered the nightside hemisphere, which contains the stronger surface magnetic pole, the bandwidth increased dramatically and thereafter remained large. Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.  相似文献   

4.
The infrared interferometer spectrometer (IRIS) on Voyager 2 recorded thermal emission spectra of Uranus between 200 and 400 cm(-1) and of Miranda and Ariel between 200 and 500 cm(-1) with a spectral resolution of 4.3 cm(-1). Reflected solar radiation was also measured with a single-channel radiometer sensitive in the visible and near infrared. By combining IRIS spectra with radio science results, a mole fraction for atmospheric helium of 0.15 +/- 0.05 (mass fraction, 0.26 +/- 0.08) is found. Vertical temperature profiles between 60 and 900 millibars were derived from average polar and equatorial spectra. Temperatures averaged over a layer between 400 to 900 millibars show nearly identical values at the poles and near the equator but are 1 or 2 degrees lower at mid-latitudes in both hemispheres. The cooler zone in the southern hemisphere appears darker in reflected sunlight than the adjacent areas. An upper limit for the effective temperature of Uranus is 59.4 kelvins. Temperatures of Miranda and Ariel at the subsolar point are 86 +/- 1 and 84 +/- 1 kelvins, respectively, implying Bond albedos of 0.24 +/- 0.06 and 0.31 +/- 0.06, respectively. Estimates of phase integrals suggest that these satellites have unusual surface microstructure.  相似文献   

5.
An atmospheric general circulation model, which assimilates data from daily observations of temperature, humidity, wind, and sea-level air pressure, was compared with a set of observations that combines satellite and ground-based measurements of solar flux. The comparison reveals that the model underestimates by 25 to 30 watts per square meter the amount of solar energy absorbed by Earth's atmosphere. Contrary to some recent reports, clouds have little or no overall effect on atmospheric absorption, a consistent feature of both the observations and the model. Of several variables considered, water vapor appears to be the dominant influence on atmospheric absorption.  相似文献   

6.
In late December 1990, a new radio source appeared near the center of our galaxy rivaling the intensity of Sgr A(*) (the compact radio source at the galactic center). Following its first detection, the flux density of the galactic center transient (GCT) increased rapidly to a maximum 1 month later, and then declined gradually with a time scale of about 3 months. Surprisingly, the GCT maintained a steep radio spectrum during both its rising and decay phases. The neutral hydrogen (HI) absorption shows similar absorption to that in front of Sgr A(*); this indicates that the GCT lies near the galactic center. Furthermore, both HI and OH observations show an additional deep absorption at +20 kilometers per second with respect to the local standard of rest. Thus, the GCT is either embedded in or located behind a molecular cloud moving with that velocity. The cloud can be seen on infrared images. Its opacity is shown to be inadequate to conceal a supernova near the galactic center. It is argued that the GCT was probably transient radio emission from synchrotron-radiating plasma associated with an x-ray binary system.  相似文献   

7.
The spectrum of Mercury at the Fraunhofer sodium D lines shows strong emission features that are attributed to resonant scattering of sunlight from sodium vapor in the atmosphere of the planet. The total column abundance of sodium was estimated to be 8.1 x 10(11) atoms per square centimeter, which corresponds to a surface density at the subsolar point of about 1.5 x 10(5) atoms per cubic centimeter. The most abundant atmospheric species found by the Mariner 10 mission to Mercury was helium, with a surface density of 4.5 x 10(3) atoms per cubic centimeter. It now appears that sodium vapor is a major constituent of Mercury's atmosphere.  相似文献   

8.
Two sets of passive radio observations of Venus-measurements of the spectrum of the disk temperature near the 1-centimeter wavelength, and interferometric measurements of the planetary limb darkening at the 1.35-centimeter water vapor resonance-show no evidence of water vapor in the lower atmosphere of Venus. The upper limit of 2 x 10(-3) for the mixing ratio of water vapor is substantially less than the amounts derived from the Venera space probes (0.5 x 10(-2) to 2.5 x 10(-2)). This amount of water vapor cannot produce dense clouds, and it is doubtful that it may contribute significantly to a greenhouse effect.  相似文献   

9.
Binary supermassive black holes are produced by galactic mergers as the black holes from the two galaxies fall to the center of the merged system and form a bound pair. The two black holes will eventually coalesce in an enormous burst of gravitational radiation. Here we show that the orientation of a black hole's spin axis would change dramatically even in a minor merger, leading to a sudden flip in the direction of any associated jet. We identify the winged or X-type radio sources with galaxies in which this has occurred. The inferred coalescence rate is similar to the overall galaxy merger rate, implying that of the order of one merger event per year could be detected by gravitational wave interferometers.  相似文献   

10.
The Voyager spacecraft observed a narrow, eccentric ringlet in the Maxwell gap (1.45 Saturn radii) in Saturn's rings. Intercomparison of the Voyager imaging, photopolarimeter, ultraviolet spectrometer, and radio science observations yields results not available from individual observations. The width of the ringlet varies from about 30 to about 100 kilometers, its edges are sharp on a radial scale < 1 kilometer, and its opacity exhibits a double peak near the center. The shape and width of the ringlet are consistent with a set of uniformly precessing, confocal ellipses with foci at Saturn's center of mass. The ringlet precesses as a unit at a rate consistent with the known dynamical oblateness of Saturn; the lack of differential precession across the ringlet yields a ringlet mass of about 5 x 10(18) grams. The ratio of surface mass density to particle cross-sectional area is about five times smaller than values obtained elsewhere in the Saturn ring system, indicating a relatively larger fraction of small particles. Also, comparison of the measured transmission of the ringlet at radio, visible, and ultraviolet wavelengths indicates that about half of the total extinction is due to particles smaller than 1 centimeter in radius, in contrast even with nearby regions of the C ring. However, the color and brightness of the ringlet material are not measurably different from those of nearby C ring particles. We find this ringlet is similar to several of the rings of Uranus.  相似文献   

11.
Sagittarius (Sgr) A(*) is a unique radio source located at the center of our galaxy. The radiation from Sgr A(*) may be generated in matter accreting onto a massive black hole. In observations at long wavelengths, the apparent angular size of Sgr A(*) decreases in the manner expected for emission from a point source scattered by electron density fluctuations along the line of sight. Measurements at a wavelength of 7 millimeters with the nearly completed Very Long Baseline Array indicate a size of 0.7 milliarc seconds, which is consistent with an extrapolation from results at longer wavelengths. The true size of Sgr A(*) must be less than 0.4 milliarc seconds, or 3.3 astronomical units. The inferred black hole mass is less than 1.5 x 10(6) solar masses according to a recent model for the emission.  相似文献   

12.
Variations in the earth's rotation (UT1) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UT1 fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Ni?o of 1982-1983 was marked by a strong peak in the length of day.  相似文献   

13.
From over 200 observations of the decreasing spin rate of Vanguard I made during the year since its launching, eddy-current induction theory yields 0.115 +/- 0.001 gauss as the mean magnetic field normal to the spin axis of the satellite. This measured value agrees with that deduced from Bauer's model of the earth's dipole field.  相似文献   

14.
Hapke's photometric model has been combined with a plane-parallel thin atmospheric haze model to describe Voyager whole-disk observations of Triton, in the violet (0.41 microm), blue (0.48 microm), and green (0.56 microm) wavelength bands, in order to obtain estimates of Triton's geometric albedo, phase integral, and Bond albedo. Phase angle coverage in these filters ranging from approximately 12 degrees to 159 degrees was obtained by combining narrow- and wide-angle camera images. An upturn in the data at the highest phase angles observed can be explained by including scattering in a thin atmospheric haze layer with optical depths systematically decreasing with wavelength from approximately 0.06 in the violet to 0.03 for the green filter data. The geometric albedo, phase integral, and spherical albedo of Triton in each filter corresponding to our best fit Hapke parameters yield an estimated Bond albedo of 0.82 +/- 0.05. If the 14-microbar N(2) atmosphere detected by Voyager is in vapor equilibrium with the surface (therefore implying a surface temperature of 37.5 K), our Bond albedo implies a surface emissivity of 0.59 +/- 0.16.  相似文献   

15.
大气污染物的预防与治理   总被引:1,自引:0,他引:1  
大气中的污染物会对人类产生不良的影响,治理大气污染已成为节能减排的主要措施之一。对我国现阶段大气中主要污染物的基本治理方法和防治措施进行了论述,包括减少大气污染物产生的措施、大气污染治理技术、加强监管与执法等内容。  相似文献   

16.
Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.  相似文献   

17.
Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).  相似文献   

18.
Formaldehyde could have been produced by photochemical reactions in Earth's primitive atmosphere, at a time when it consisted mainly of molecular nitrogen, water vapor, carbon dioxide, and trace amounts of molecular hydrogen and carbon monoxide. Removal of formaldehyde from the atmosphere by precipitation can provide a source of organic carbon to the oceans at the rate of 10(11) moles per year. Subsequent reactions of formaldehyde in primeval aquatic environments would have implications for the abiotic synthesis of complex organic molecules and the origin of life.  相似文献   

19.
Data from the Voyager II spacecraft showed that Uranus has a large magnetic field with geometry similar to an offset tilted dipole. To interpret the origin of the magnetic field, measurements were made of electrical conductivity and equation-of-state data of the planetary "ices" ammonia, methane, and "synthetic Uranus" at shock pressures and temperatures up to 75 gigapascals and 5000 K. These pressures and temperatures correspond to conditions at the depths at which the surface magnetic field is generated. Above 40 gigapascals the conductivities of synthetic Uranus, water, and ammonia plateau at about 20(ohm-cm)(-1), providing an upper limit for the electrical conductivity used in kinematic or dynamo calculations. The nature of materials at the extreme conditions in the interior is discussed.  相似文献   

20.
Atmospheric CO2: principal control knob governing Earth's temperature   总被引:1,自引:0,他引:1  
Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号