首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
固定化反硝化细菌脱氮的研究   总被引:3,自引:0,他引:3  
以反硝化细菌为例,研究了PVA包埋和未包埋的反硝化细菌脱氮特性。采用PVA纱布块包埋反硝化细菌,对其在不同氮源、不同温度和不同铵盐浓度下的脱氮特性进行研究,并与未包埋反硝化细菌进行比较。结果表明,固定化反硝化细菌对废水脱氮的最适温度未变,为30℃,固定化反硝化细菌对NO2--N150mg/L脱氮速率在10℃和30℃分别是19.23和60.00mg/(g·h),而未固定化的只有6.89和25.6mg/(g·h)。固定化硝化细菌对NO3--N150mg/L脱氮速率在10和30℃分别是10.87和42.86mg/(g·h),而未固定化的只有3.05和15.86mg/(g·h)。固定化和未固定反硝化细菌在NH4 浓度为200mg/L时的脱氮速率分别是25.90和13.90mg/(g·h)(NO2--N150mg/L,30℃),29.10和14.90mg/(g·h)(NO3--N150mg/L,30℃)。说明固定化反硝化细菌对高浓度的铵离子和低温耐受性增加。但固定化反硝化细菌对NO2-的脱氮速率小于对NO3-的脱氮速率。  相似文献   

2.
以亚硝化细菌、反硝化细菌为研究对象,采用共固定化细胞技术,以海藻酸钠共固定化亚硝化-反硝化细菌,研究了共固定化工艺条件及其在模拟污水中的脱氮效果。结果表明,共固定化亚硝化-反硝化细菌最佳工艺条件为4.5%海藻酸钠和2.1%氯化钙共固定化细胞,接种量为3个/m L培养基,接种于装有140 m L模拟污水液体培养液的250 m L三角瓶中,最佳p H为8,最佳培养温度30℃,110~140 r/min培养。54 h时氨氮去除率为95.95%,78 h时亚硝态氮去除率为95.82%。共固定化小球可重复使用3次、低温对共固定化后菌种脱氮性能的影响较小。  相似文献   

3.
为了探索养殖水体中含氮废水的去除方法,对一株好氧反硝化细菌DG-3的脱氮特性进行了系统研究。在好氧条件下,分别探讨菌株DG-3去除NH4+-N和NO2--N的能力,以及多种环境因子对该菌去除NH4+-N和NO2--N性能的影响,并对其在混合氮源系统中的脱氮特性进行研究。结果发现,菌株DG-3在以柠檬酸钠为碳源、p H8.5、C/N为15、30℃、150r/min培养条件下,在24h时对NH4+-N和NO2--N的降解率分别为99.09%和98.04%。在混合氮源脱氮系统内,NH4+-N在前12h内的去除率比在单一NH4+-N为氮源的培养基中提高了12.94%,同时可完全降解NO2--N。结果表明,菌株DG-3能利用多种氮源进行脱氮作用,在养殖水体脱氮应用中具有广阔的前景。  相似文献   

4.
氢自养反硝化修复地下水中的硝酸盐污染以其清洁、环保又经济而受到广泛重视.利用全自动恒温振荡仪,以NaHCO3为碳源驯化氢自养反硝化细菌,并对影响氢自养反硝化速率的因素进行了研究.结果表明,以NaHCO3作为唯一的无机碳源,不仅可以高效驯化氢自养反硝化细菌,而且可以控制体系的pH值,效果优于单独以CO2或以CO2和NaHCO3共同为碳源的系统;当单独以NaHCO3为碳源时,其浓度为2 g·L-1时可以满足氢自养反硝化细菌的生长,并使体系pH保持在8.5±0.2;当初始NO3--N浓度<135.6mg·L-1时,反硝化速率随着NO3--N浓度的升高而增大,当NO3--N浓度过高时(>135.6 mg·L-1),会抑制氢自养反硝化的进行;当pH在6.0~9.0时,氢自养反硝化可以进行,但其最适pH为7.0~8.0,而当pH<6.0或pH>9.0时,反硝化基本停滞;温度为35℃时反硝化速率最大,为2.83 mg·L-1·h-1,当温度为15℃时,有明显的亚硝酸盐积累.  相似文献   

5.
[目的]通过在复合垂直潜流人工湿地系统中筛选高效的硝化细菌和反硝化细菌,以降低氮素污染对养殖水域生态系统的危害,为加强人工湿地氮素净化功能提供科技支撑.[方法]在复合垂直潜流人工湿地—池塘循环水养殖系统的不同运行阶段采集样品,利用选择性培养基定向筛选,选择一株高效硝化细菌和一株高效反硝化细菌,对其进行菌种鉴定,并分别研究对应菌株的硝化特性或反硝化特性.[结果]通过个体形态特征观察、生理生化鉴定及16S rDNA同源性比对分析,确定硝化菌株ZX2属于不动杆菌属(Acinetobacter),反硝化菌株ZF7属于假单胞菌属(Pseudomonas).在pH为7.0,温度为30℃,亚硝酸钠浓度为0.8 g/L的条件下硝化菌株ZX2的硝化能力最强,OD600可达0.80以上,硝化速率达68.4 mg/(L·d).在pH为7.0,温度为35℃,接种量为6%的条件下反硝化菌株ZF7的反硝化能力最强,OD600可达1.00以上,脱氮率达94.5%.[结论]筛选得到的硝化细菌和反硝化细菌具有很好的氮素净化效果,可为下一步强化人工湿地氮素净化功能提供备用菌株.  相似文献   

6.
供氮水平对草莓氮素同化的影响   总被引:2,自引:0,他引:2  
以水培丰香草莓为试材,对不同供氮水平条件下草莓的氮素同化作了研究。结果表明:随着水培液硝酸盐浓度的提高,NO3--N吸收速率和植株中NO3--N含量逐渐提高,但NO3--N浓度为7.5 mmol/L时硝酸还原酶(NR)活性最高。根系中NR活性显著低于叶片,叶片中NR活性最高可达390 nmolNO2/(g.h FW),根系仅为121.3 nmolNO2/(g.h FW),表明NR活性是制约草莓对硝酸盐响应的关键因素。  相似文献   

7.
碳源是低碳氮比废水反硝化过程的限制性因素之一,外加固体碳源可以强化微生物反硝化脱氮效果。为筛选出合适的外加碳源,本研究选用廉价的农业废弃物(稻草和锯木屑)和水生植物(绿狐尾藻和梭鱼草)作为固体碳源材料,分析不同固体碳源材料的释碳特征,比较其对反硝化过程的脱氮效果。结果表明,4种材料的释碳过程均符合二级动力学方程,其释碳能力大小为:稻草(25.64 mg/(g·L))梭鱼草(23.64 mg/(g·L))锯木屑(22.37 mg/(g·L))绿狐尾藻(20.45 mg/(g·L)),其中,绿狐尾藻的释放速率最快,其COD释放浓度达饱和浓度一半时所用时间仅为3.56 h。4种材料作为外加固体碳源可显著提高反硝化脱氮效率,其对水体硝态氮的去除率均达80%以上。由于梭鱼草在试验后期出现氨氮的大量积累,会造成水体二次污染。因此,稻草、锯木屑和绿狐尾藻适合作为外加碳源材料利用。  相似文献   

8.
反硝化细菌的分离筛选及其反硝化特性的初步研究   总被引:3,自引:2,他引:1  
从不同的水样、土样中用反硝化选择性培养基分离出202株反硝化细菌.以硝酸盐的降解、亚硝酸盐的积累和脱氮率为筛选指标,从这些菌株中得到1株反硝化能力强的菌株A13,经牛理生化试验和16s rDNA序列分析,鉴定该菌株为地衣芽胞杆菌(Bacillus licheni formis).然后将该菌株与保存的反硝化菌DNF409联合应用,脱氮率比应用单株菌提高近30%.在此基础上采用响应面分析法(中心组合一致精度设计,SAS9.1.3),建立了初始硝态氮浓度为25 mg/L水样脱氮率的回归方程,同时得出最佳反硝化条件是CODMn为35.1mg/L,温度为32.5℃,投菌量为6.2×106cfu/mL,反硝化时间为114.2 h,此时脱氮率达99%以上.  相似文献   

9.
采用批实验和连续实验对以报纸为固体碳源的反硝化过程进行了研究。批实验结果表明,以报纸为碳源的反硝化反应受温度影响较大。室温条件下(25℃左右),细菌活力旺盛,代谢速度快,反硝化速率很高,是低温条件下的2.73倍。在连续实验中,室温条件下反应器启动快;稳定运行了2个月时间,进水NO3--N浓度变化范围为20.5105.1 mg/L,当进水NO3--N浓度为20 mg/L左右时,出水NO3--N浓度最低为0.12 mg/L,去除率为99.41%;随着进水NO3--N浓度的升高,NO3--N去除率逐渐下降。实验后期,由于报纸表面变得光滑,没有足够的表面积供细菌生长附着,导致反硝化效率持续下降。  相似文献   

10.
为明确生物活性滤池对水中氨氮(NH4+-N)和亚硝酸盐氮(NO2--N)的去除效果及影响因素,采用连续流生物活性滤池装置开展试验研究。试验期间进水NH4+-N在0.69~1.25 mg·L-1,NO2--N浓度为0.06~0.38 mg·L-1,试验装置处理规模为180 L·d-1。结果表明,挂膜成功时,NH4+-N和NO2--N去除效率分别为71.32%~77.78%和87.1%~98.6%;稳定运行期间异养菌和硝化细菌空间竞争较弱,表现在沿程对CODMn、NH4+-N和NO2--N去除效果集中在35 cm以上的空间;在低于5℃状况运行,生物活性滤池对NH4+-N有稳定的去除,而NO2--N去除效果出现明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号