首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以碱木质素热解炭为碳源,采用酸回流法制备荧光水溶性纳米碳量子点,并通过扫描电子显微镜、透射电子显微镜、红外光谱和荧光分光光度法对其形貌、粒径分布、表面官能团以及荧光性质进行表征分析。结果表明:所制备的碳量子点粒径集中分布在1.5~2.5 nm之间,为均匀的类球状,且表面呈现有序的晶格结构;红外光谱分析显示碳量子点表面存在—OH等大量的含氧官能团;荧光光谱分析显示碳量子点在355 nm和442 nm处有特征激发和发射波长。当改变激发波长,发射波长产生红移,产物在可见光区域有较好的响应。在特定激发波长下随着p H的增大,碳量子点的光谱峰值呈现递减的趋势,当p H7,光谱发生蓝移现象。而且,制备出的碳量子点/Ti O_2复合光催化剂在可见光下表现出较好的降解性能,对苯酚的降解率达91%。  相似文献   

2.
实验通过水热合成法制备出了BiPO_4/Ag_2O纳米复合光催化材料,利用扫描电子显微镜、X射线衍射仪对该复合材料的结构和形态进行了表征,然后进行了光催化降解有机染料甲基蓝的研究,通过紫外分光光度计测其吸光度,证明了其光催化效率。  相似文献   

3.
以木质素和间苯二胺为前体,通过简单的一步水热法合成了蓝色发光碳量子点(B-CQDs),进一步通过硝酸氧化作用,合成了绿色发光碳量子点(G-CQDs);通过紫外吸收光谱、荧光光谱、TEM、FT-IR和XPS对两种CQDs的光学性质和结构特征进行表征分析,并测试了G-CQDs的细胞毒性及细胞成像性能。结果表明:硝酸在G-CQDs的合成中起着重要的作用,硝酸的氧化作用使CQDs石墨N含量增加,石墨化程度加深,表面态被钝化,荧光发射波长红移。结构性质分析表明所制备的B-CQDs和G-CQDs主要由C、N、O这3种元素构成,表面都具有—OH、—NH、C—O和—COOH等丰富的亲水基团,在水中是单分散的,平均粒径分别为1.3和2.5 nm。光学性质分析表明B-CQDs和G-CQDs的特征激发波长分别为392和446 nm,对应的发射波长分别为488和514 nm。B-CQDs和G-CQDs分别表现出激发相关的发射行为和激发无关的发射行为。研究发现G-CQDs的可能发射机制属于基于共轭π-域的带隙荧光发射。所合成的G-CQDs具有优异的光致发光、稳定的荧光和低细胞毒性等优点,可以应用于HeLa细胞生...  相似文献   

4.
以羧甲基纤维素(CMC)为原料,通过水热炭化-CO2活化制备微米级球形活性炭。研究了水热炭化温度、时间和CMC用量对前驱体炭球的形貌、粒径和分散性的影响,分析了活化温度、时间对球形活性炭形貌和孔结构的影响。通过扫描电子显微镜(SEM)、红外光谱(FT-IR)和光电子能谱(XPS)对前驱体炭球的形貌、表面官能团进行了表征分析,并用低温液氮吸附分析了球形活性炭的孔径结构。结果表明,前驱体炭球的含氧官能团以—COOR和—OH为主,在温度为200℃,CMC用量为1.5 g,40 mL H2O,反应时间为10 h,可成功制备出形貌规则,粒径均一,分散性良好的微米级炭球。前驱体炭球经在850℃下经CO2活化2 h可制备出球形结构完整的微米级球形活性炭,比表面积高达1 005.85 m2/g,平均孔径为2.78 nm。  相似文献   

5.
以落叶松树皮为原料,40%乙醇水溶液为溶剂,通过超声波破碎法得到提取液后加入乙二胺,采用水热合成法制备了N掺杂碳点(NCDs)。通过FT-IR、XPS、TEM、XRD和UV对NCDs的结构进行表征分析,结果表明:制备的NCDs主要含有C、N、O这3种元素,其表面存在苯环、氨基、羟基和羰基等基团;NCDs为球形粒子,平均粒径4.8 nm,其存在石墨化碳核的(002)晶面,在≤300 nm和300~600 nm区域存在由π-π~*和n-π~*电子跃迁引起的紫外吸收,证实了NCDs主要由石墨化碳核及其表面功能基团组成。荧光性能分析结果表明:NCDs具有激发依赖性和良好的抗光漂白稳定性,随着温度的升高其荧光强度降低。通过不同金属离子对NCDs荧光强度影响分析,可知Fe3+对NCDs具有选择性荧光静态猝灭作用,其检测极限(LOD)值为9.07μmol/L。通过复合法制备了黄绿色荧光粉NCDs/SiO2,将其作为颜色转换层,使用蓝光发射(450 nm)半导体芯片封装,可得到国际照明委员会(CIE)1931色度图坐标为(0.318 2,0.303 0),相...  相似文献   

6.
竹炭-ZnO复合材料的制备及对苯酚的光催化降解作用   总被引:2,自引:0,他引:2  
以硅酸钠为粘结剂用浸涂法制备了竹炭-ZnO复合材料,用FT-IR、电镜扫描(SEM)对其进行结构表征和形貌观察,研究了该复合材料对溶液中苯酚光催化降解去除效果.结果表明:制备竹炭-ZnO复合材料的最佳配比为m(竹炭) ∶m(ZnO)∶m(Na2 SiO3·9H2O) 为5∶2∶1;酸性条件下,竹炭-ZnO复合材料对苯酚的去除效果更好,H2 O2对苯酚溶液光催化降解有促进作用.当苯酚溶液的质量浓度为50mg/L时,复合材料最佳用量为2g/L,溶液中H2 O2最佳的添加量为1.95mmol/L,在紫外灯和太阳光下催化降解4h,苯酚去除率分别达到92.3%和76.4%.复合材料重复使用3次,对苯酚的去除率仍可以达到80%以上.  相似文献   

7.
以漂白紫胶为原料,采用水热法一步合成水溶性的可发射蓝色荧光的紫胶基碳量子点(shellac-CQDs)。通过傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、动态光散射粒度(DLS)分析仪等对其组成和结构进行表征,分析结果显示shellac-CQDs主要含有C和O元素,是由芳香环结构和大量含氧官能团构成,平均粒径2.0 nm。光谱测试结果表明:shellac-CQDs的荧光最大激发波长和发射波长分别为320和432 nm,紫外-可见光谱(UV-Vis)中的最大吸收波长为289 nm。基于shellac-CQDs良好的荧光性能及盐酸四环素对其荧光的减弱作用,建立了以shellac-CQDs为荧光传感器检测盐酸四环素的新方法。shellac-CQDs荧光峰面积的变化值与盐酸四环素质量浓度位于0.02~0.10 g/L范围内呈现良好的线性关系,该方法的检出限为0.01 g/L;在自来水或饲料中盐酸四环素检测的初步应用结果发现:样品的回收率在96.9%~107.7%之间,相对标准偏差(RSD)在1.9%~5.5%之间,说明该方法准确性较高,重复性较好,具有潜在...  相似文献   

8.
水热炭化微晶纤维素制备炭球-活性炭复合材料   总被引:1,自引:0,他引:1  
以微晶纤维素(MC)为原料,柠檬酸为催化剂,活性炭为载体,经水热炭化法形成炭球并负载于活性炭的表面和孔内合成含氧官能团丰富的炭球-活性炭复合材料。用扫描电镜(SEM)、低温液氮吸附(N2/77K)、傅里叶红外(FT-IR)和水相三价铬吸附实验对炭球-活性炭复合材料的表面负载炭球形貌、孔隙结构、含氧官能团种类和重金属离子的吸附性能进行表征。研究表明:MC在柠檬酸的催化作用下,在水热条件下可以形成形貌良好、结构规整的炭球,炭球负载于活性炭表面和孔内部。炭化温度、炭化时间和MC质量浓度,均能影响炭球的粒径和数量。炭球-活性炭复合材料的表面富含—OH、COOH、C=O等含氧官能团;当MC质量浓度为2.0 g/L时,复合材料对Cr3+的单位质量吸附量最大为0.356 mg/g,是活性炭的5.65倍。  相似文献   

9.
通过对4种木屑活性炭样品的吸附性能测定和微结构表征,表明活性炭对木糖醇溶液的脱色效果与亚甲基蓝吸附能力的大小密切相关,但亚甲基蓝吸附值不是决定活性炭对木糖醇溶液中色素杂质吸附的唯一因素。中孔的数量是影响活性炭对木糖醇溶液中色素杂质吸附的重要因素,尤其是尺寸为2~14 nm的中孔的数量对木糖醇溶液中色素杂质吸附的影响比较大。红外光谱分析显示表面官能团C—O的存在会促进活性炭对木糖醇溶液中色素杂质的吸附。  相似文献   

10.
碱木质素三步法制备微米尺寸球形活性炭研究   总被引:2,自引:0,他引:2  
以碱木质素为原料采用球形木质素前驱体,炭化,活化三步法制备微米尺寸的球形活性炭。研究了球形木质素前驱体的制备条件及活化条件对球形活性炭的粒径大小、结构形貌、孔结构的影响;采用扫描电子显微镜(SEM)、低温N2吸附-脱附以及傅里叶红外光谱(FT-IR)对产物的形貌结构、吸附性能和表面官能团进行了表征。结果表明,当反应温度为90℃,反应时间10 h,搅拌速度200 r/min,p H值为3.0的条件下,制备出粒径为5μm左右、球形形貌完整的球形木质素前躯体。通过对球形木质素前躯体在300℃炭化以及850℃下CO2活化,制备出比表面积为776.96 m2/g,总孔容为0.487 1 cm3/g,平均孔径为2.51 nm的球形活性炭。  相似文献   

11.
以溶胶凝胶法分别制备了TiO_2和不同TiO_2含量的负载型13X沸石/TiO_2复合光催化剂,对制备出的光催化剂分别进行了XRD和SEM表征。在紫外灯下以250mL浓度为30mg/L的亚甲基蓝溶液为目标污染物,研究了13X/TiO_2的去除或光催化降解性能。结果表明:制备出的TiO_2粒径约27~50nm并附着在沸石颗粒表面,当负载量为50%时达到最佳配比,其去除率和光催化降解率分别为74.66%和62.64%,此时13X/TiO_2复合光催化剂具有最大的光催化降解效率。  相似文献   

12.
以歧化松香为原料先制得脱氢枞酸,然后通过对脱氢枞酸进行酯化、溴代、硝化、加氢还原、C—N偶联等方法合成了一种含双萘的脱氢枞酸三芳胺化合物——13-[N,N-双(α-萘)]胺基-脱异丙基脱氢枞酸甲酯,并用IR、~1H NMR、13C NMR和MS等手段对其结构进行表征。研究了化合物在甲醇、二氧六环、四氢呋喃、二氯甲烷和环己烷5种不同极性溶剂中的紫外吸收和荧光发射特征,以及化合物的荧光寿命和量子产率,结果显示:化合物有3个紫外吸收峰,在甲醇、二氧六环和环己烷中,第一个吸收峰在218 nm处,而在四氢呋喃和二氯甲烷中吸收峰有较大红移,且吸光度有较大不同;在265、342 nm处的两个吸收峰,不同溶剂中的吸收波长一致,且吸光度相差不大;在这5种溶剂中,化合物在甲醇中发射波长最大(448 nm),荧光强度最小,在环己烷中发射波长最小(405 nm),而荧光强度最大,在二氧六环、四氢呋喃和二氯甲烷溶液中,随着溶剂极性减小,发射波长依次增大;化合物有明显的溶致变色效应。化合物在甲醇溶液中的荧光寿命为3.72 ns,量子产率为8.32%。  相似文献   

13.
以微晶纤维素为原料,卵清蛋白(OVA)为N源,采用水热炭化法制备N掺杂炭气凝胶(NCA)。利用SEM、氮气的吸附脱附、XRD、FT-IR和XPS对NCA表面形貌、孔径结构、晶相结构和表面化学组成进行表征,并以Pb~(2+)和Cr~(6+)为模型物评价NCA对重金属离子的吸附性能。结果表明:所制备的NCA是由无定形炭组成的三维网状立体结构,BET比表面积为134.48 m2/g,平均孔径为12.28 nm,总孔容为0.413 0 m3/g;NCA由C、N、O组成,XPS表明其表面存在CO,—COOH以及C—N等官能团,其中N元素以亚硝酰、氨基、吡啶N和季铵N的形式存在。NCA对Pb~(2+)和Cr~(6+)的吸附过程更符合Langmuir等温模型和准二级动力学模型,25℃时NCA对Pb~(2+)和Cr~(6+)的最大吸附量分别为223.98 mg/g和35.12 mg/g,而CA对Pb~(2+)和Cr~(6+)的最大吸附量分别为65.78 mg/g和16.65 mg/g。NCA对重金属离子的吸附效果明显优于未掺杂N的炭气凝胶(CA)。  相似文献   

14.
农林废弃物作为碳前驱体合成生物质碳量子点(CQDs)已被广泛关注,但因CQDs荧光性能较差而限制了其应用。以废弃的酶解木质素(EHL)为前驱体、柠檬酸(CA)为催化剂,通过绿色的一步水热技术制备高荧光性能的木质素基CQDs,并利用CQDs的光致发光特性开发了一种新型的CQDs/聚乙烯醇(PVA)荧光纳米复合材料。探究了催化剂的用量、碳量子点的形貌、结构、荧光性能以及复合材料的荧光性、紫外线屏蔽能力和抗氧化性能。结果表明:柠檬酸催化改性能够有效提高木质素基CQDs(CA-EHL CQDs)的荧光强度和效率。经柠檬酸催化改性的木质素基CQDs表现出高度结晶化结构且平均粒径为2.4 nm,其荧光强度是EHL CQDs的6.1倍,荧光效率最高可达5.0%。红外光谱和能谱数据分析表明CA-EHL CQDs表面富含羟基和羧基官能团,具有优异的水溶性。此外,通过紫外可见光透过曲线和1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率研究发现,CQDs/PVA纳米复合材料具有优异的荧光性能、紫外线屏蔽能力和抗氧化能力。本研究提供了一种绿色、高效、简便的木质素CQDs的制备方法,并对其功能化应用进行了...  相似文献   

15.
王雷  刘东升  顾怀章  梁春华 《绿色科技》2022,(12):172-174+177
采用溶胶-凝胶法制备了纳米ZnO及Fe/Zr共掺杂纳米ZnO,使用扫描电镜对制备的材料进行了形貌观察,并使用紫外分光光度计对制备材料的吸收光谱及甲基橙光催化性能进行了测试。结果表明:Fe/Zr共掺杂后纳米ZnO得到细化,吸收光谱发生了蓝移,溶胶-凝胶法制备的纳米ZnO及1%Fe/Zr掺杂纳米ZnO对甲基橙具有降解作用,且1%Fe/Zr掺杂纳米ZnO降解效果更好。  相似文献   

16.
基于杨木模板的二氧化钛制备及其甲醛降解性能研究   总被引:1,自引:0,他引:1  
使用二氧化钛(TiO_2)光催化降解甲醛,具有节能环保,清洁无毒的优点,同时TiO_2光催化剂可有效降解室内其他污染物以及细菌等有害生物的污染,大大改善室内居住环境。为了提高TiO_2的催化活性和制备结构优良的TiO_2,以杨木为模板,通过采用水热预处理-前驱体浸渍-高温煅烧的工艺方法,进行木材模板TiO_2的制备,以甲醛水溶液的降解性能为指标,对浸渍合成工艺进行优化,并结合SEM、XRD和氮吸附测试分析,对材料进行表征。研究结果表明:以杨木为模板制备的TiO_2对甲醛水溶液具有一定的降解能力,优化前驱体浸渍液中钛酸丁酯∶水∶无水乙醇∶冰乙酸=1∶3∶9∶2(摩尔比),超声浸渍木材模板4 h,超声反应15 min的条件下制备的木材模板TiO_2对甲醛水溶液的降解率最高;在紫外光照下,杨木模板TiO_2粒子受到激发光催化降解甲醛,在120 min内降解率达到12.61%,280 min内降解率达到15.17%;杨木模板TiO_2的晶型结构主要为锐钛矿和少量金红石相,平均晶粒尺寸为18.8 nm,较小的粒径度和多孔结构使得木材模板TiO_2具有较强的紫外光吸收能力,进而提高了材料的紫外光降解能力。  相似文献   

17.
以香蒲花序为原料,NH4H2PO4为掺杂剂,经酸性NaClO2预处理、超声波细胞破碎处理、冷冻干燥、高温炭化制备N、P共掺杂香蒲基炭气凝胶(NPCA)。采用SEM、N2吸附/脱附、XRD、XPS对NPCA的形貌、孔隙结构、晶相结构、表面化学组成进行表征,系统研究了掺杂量和炭化温度对NPCA电化学性能的影响。研究结果表明:NPCA是由无定形炭组成的三维网状立体结构;NPCA表面氮元素以吡啶氮(N-6)、吡咯氮(N-5)、石墨化氮(N-Q)和氧化氮(N-X)的形式存在,磷元素以P—O和P—C的形式存在。NH4H2PO4的掺杂量和炭化温度影响NPCA的孔隙结构及表面化学结构。NPAC的较佳制备条件为:香蒲纤维素与NH4H2PO4的质量比为1∶2,炭化温度800℃。此条件下制备的NPAC-2-800具有丰富的孔隙结构和表面官能团,比表面积为599.88 m...  相似文献   

18.
以碱木质素为原料,在强酸环境中进行氧化水热反应制备碳量子点(CQDs),并对合成条件进行优化,结果显示:最优的合成条件为碱木质素用量1.3 g,反应温度180℃,反应时间12 h,Na BH_4用量1.3 g。采用透射电镜(TEM)及激光粒度分析(DLS)对CQDs形貌及尺寸进行表征,显示CQDs具有较好的分散性,尺寸分布均匀,平均粒径约为3.5 nm。采用红外光谱(FT-IR)及X射线光电子能谱(XPS)表征CQDs结构及组成元素,表明CQDs表面含有大量羰基、羧基等含氧官能团。此外,通过紫外-可见光谱(UV-vis),荧光光谱(FL)表征CQDs光学性质,其荧光量子产率达17.3%。以CQDs为探针,采用比色法将其用于Fe~(3+)检测,结果表明:CQDs对Fe~(3+)具有较好的选择性,在0~400μmol/L范围内溶液吸光度与Fe~(3+)浓度呈线性关系(R2=0.995 4),检测限可达0.136μmol/L。同时,合成的CQDs表现出较低的细胞毒性,其在生物医药方面具有潜在应用价值。  相似文献   

19.
采用接触角测量仪、红外光谱等分析仪器,研究低温等离子体处理对竹粉/PETG复合材料改性效果的影响。结果表明:放电功率为300 W的低温等离子体处理试样后,试样的吸水率最高;放电功率为300 W的低温等离子体处理试样2 min后,试样的时效性最优;试样经低温等离子体处理后,试样表面的—C—O—C数量增多,随着处理时间的增加,—C—O—C逐渐被氧化成—C O,试样的表面极性增强。  相似文献   

20.
【目的】研究酶解木质素(EHL)在四氢呋喃(THF)中的质量浓度对制备纳米木质素中空粒子(LHNPs)结构的影响以及载盐酸阿霉素(DOX)粒子(DOX@LHNPs)结构对药物控释行为的影响,为LHNPs在不同领域的选择性包载利用提供参考。【方法】将不同质量EHL溶解在THF中,制备不同质量浓度木质素溶液,向溶液中滴加去离子水使两亲性木质素自组装成结构不同的纳米木质素中空粒子。在制备过程中加入一定质量DOX,EHL自组装成纳米粒子的同时会将DOX包裹在LHNPs腔体内,形成载药纳米粒子。借助透射电镜(TEM)、扫描电镜(SEM)、激光粒度仪(DLS)、比表面与孔隙度分析仪等手段表征材料的微观结构和粒径尺寸。利用紫外-可见光分光光度计(UV-vis)、X射线衍射仪(XRD)、红外光谱仪(FTIR)等仪器表征测试LHNPs对DOX的包载和控释。【结果】DLS测试结果表明,EHL初始质量浓度从0.3 mg·m L~(-1)增加到3 mg·m L~(-1),颗粒直径从552.6 nm减小到266.8 nm,PDI基本保持稳定;制备的纳米木质素粒子尺寸分布均匀,可在水中稳定保存10天以上。利用TEM、SEM结合比表面与孔隙度分析可知,纳米木质素粒子呈中空球形结构,表面开孔;随着EHL初始质量浓度增加,粒子的直径、表面积和孔隙体积均有所减小。UV-vis、XRD、FTIR表征测试表明,LHNPs能够包载DOX。酸性(pH=5.5)条件下,自由DOX和载药粒子释放DOX的速度均大于中性(pH=7.4)条件下的药物释放速度。较大的比表面积和孔隙率可提高纳米中空粒子对DOX的包载能力,壳层更厚的粒子对DOX拥有更稳定的控释能力。【结论】酶解木质素可自组装成尺寸稳定且表面具有单孔的纳米级中空球形粒子。控制酶解木质素初始质量浓度,可调节中空粒子的直径和壳层壁厚。对于DOX@LHNPs,比表面积和孔隙率越大,其载药量越大,但结构更规整、壳层壁更厚的纳米中空载药粒子对DOX的释放更稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号