首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four Holstein steers (282 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to evaluate the influence of dietary urea level (0, 0.4, 0.8, and 1.2%, DM basis) in a steam-flaked barley-based finishing diet on digestive function. There were no treatment effects (P > 0.20) on ruminal digestion of OM and ADF. Increasing dietary urea level increased (linear, P < 0.01) ruminal starch digestion. Ruminal degradability of protein in the basal diet (no supplemental urea) was 60%. Increasing dietary urea level did not increase (P > 0.20) ruminal microbial protein synthesis or nonammonia N flow to the small intestine. There were no treatment effects (P > 0.20) on total-tract ADF digestion. Total tract digestion of OM (quadratic, P < 0.01) and starch (linear, P < 0.05) increased slightly with increasing urea level. Urea supplementation increased (linear, P < 0.01) ruminal pH 1 h after feeding; however, by 3 h after feeding, ruminal pH was lower (cubic, P < 0.05) with urea-supplemented diets. Urea supplementation did not affect (P > 0.20) ruminal molar proportions of acetate and propionate. One hundred twenty crossbred steers (252 kg; approximately 25% Brahman breeding) were used in an 84-d feeding trial (five pens per treatment) to evaluate treatment effects on growth performance. Daily weight gain increased (linear, P = 0.01) with increasing urea level, tending to be maximal (1.53 kg/d; quadratic, P = 0.13) at the 0.8% level of urea supplementation. Improvements in ADG were due to treatment effects (linear, P < 0.01) on DMI. Urea supplementation did not affect (P > 0.20) the NE value of the diet for maintenance and gain. Observed dietary NE values, based on growth performance, were in close agreement with expected based on tabular values for individual feed ingredients, averaging 100.4%. We conclude that with steam-flaked barely-based finishing diets, ruminal and total-tract digestion of OM and ruminal microbial protein synthesis may not be increased by urea supplementation. In contrast, ADG was optimized by dietary inclusion of 0.8% urea. Urea supplementation may not enhance the net energy value of steam-flaked barely-based finishing diets when degradable intake protein is greater than 85% of microbial protein synthesis.  相似文献   

2.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

3.
Six Hampshire wethers with ruminal and duodenal cannulas were fed three diets in a replicated 3 X 3 latin square to compare phospholipids with triglycerides for their effects on ruminal digestion. The diets (56% concentrate, 44% bermuda-grass hay, air-dried basis) contained either no added fat (control), 5.2% soybean lecithin or 2.4% corn oil on a DM basis. All diets were isonitrogenous and both fat-supplemented diets had similar fatty acid and energy contents. Fat added to the diet, regardless of source, reduced digestibilities of DM, energy, ADF and fatty acids in the rumen but had no effect on total tract digestibility coefficients. Lecithin slightly increased (P = .06) fatty acid digestion in the hindgut compared to corn oil (91.0 and 87.0%, respectively). Both fat sources decreased (P less than .01) ruminal ammonia concentration and increased (P less than .10) N flow to the duodenum. Added fat also reduced ruminal (P less than .01) and total tract (P less than .05) N digestibilities. Microbial N flow to the hindgut was not affected by diet, but adding fat increased (P less than .06) true efficiency of microbial protein synthesis. Overall, phospholipids from soybean lecithin inhibited ruminal fermentation similarly to triglycerides from corn oil. Despite ruminal degradation of lecithin by microbial phospholipases as shown in other studies, feeding lecithin tended to increase fatty acid digestion in the hindgut.  相似文献   

4.
Six Hereford steers averaging 256 kg were used in a 2 x 3 factorial arrangement within a 6 x 6 Latin square design to study the effect of forage conservation (silage vs hay) and N supplementation (0, 200 g of fish meal plus 43 g of urea, or 400 g of fish meal) on ruminal characteristics, digestibility, blood urea, and in situ degradability of DM, N, and ADF. Dry matter intake of forage and total DMI did not differ among treatments (P greater than .05) and averaged 5.3 and 5.5 kg, respectively. Steers fed silage had greater (P less than .05) pH and concentrations of ammonia N, isobutyrate, isovalerate, and valerate in the rumen than in the rumen of those fed hay. Nitrogen supplementation increased (P less than .05) concentrations of total VFA and valerate in the rumen. Digestibility of N and ADF was greater (P less than .05) for silage than for hay, and N supplementation increased digestibility of N. Plasma urea concentrations were greater (P less than .05) for steers fed silage than for those fed hay. These data suggest that feed utilization is better with silage than with hay and is increased by N supplementation.  相似文献   

5.
选用12只安装有永久性瘤胃瘘管的1.5岁杂交一代(无角陶赛特×小尾寒羊)肉用羯羊,随机分成3组,研究日粮中不同加工方式(整株、颗粒、草粉)苜蓿干草在瘤胃内的降解及其对肉羊消化代谢的影响。试验结果表明:苜蓿干草经粉碎及颗粒处理后,DM、CP、NDF在瘤胃内的降解率较整株组有显著提高(P<0.05),但ADF降解率未有明显变化(P>0.05)。不同加工方式(整株、颗粒、草粉)苜蓿干草对DM、OM、NDF、ADF表观消化率没有影响(P>0.05),但加工成颗粒及粉料使氮的利用率显著提高(P<0.05)。3种不同加工方式下DM、OM、NDF、ADF表观消化率分别高达71.74%~72.18%、73.67%~74.22%、66.69%~68.48%、45.64%~52.41%。  相似文献   

6.
Five ruminally, duodenally, and ileally cannulated steers (376 +/- 8.1 kg of initial BW) were used in a 5 x 5 Latin square to evaluate effects of cooked molasses block supplementation and inclusion of fermentation extract (Aspergillus oryzae) or brown seaweed meal (Ascophyllum nodosum) on intake, site of digestion, and microbial efficiency. Diets consisted of switchgrass hay (6.0% CP; DM basis) offered ad libitum, free access to water, and one of three molasses blocks (0.341 kg of DM/d; one-half at 0600 and one-half at 1800). Treatments were no block (control), block with no additive (40.5% CP; POS), block plus fermentation extract bolused directly into the rumen via gelatin capsules (2.0 g/d; FS), fermentation extract included in the block (2.0 g/d; FB), and seaweed meal included in the block (10 g/d; SB). Steers were adapted to diets for 14 d followed by a 7-d collection period. Overall treatment effect on hay OM intake tended (8.1 vs. 7.6 +/- 0.5 kg/d; P = 0.14) to increase with block supplementation. Total OM intake (8.4 vs. 7.6 +/- 0.5 kg/d; P = 0.01) increased in steers consuming block compared with control. Apparent and true ruminal OM digestibility increased (P = 0.05) with block consumption. Steers fed SB had greater (P = 0.10) true ruminal OM digestibility compared with steers fed POS (61.0 vs. 57.9 +/- 1.6%). True ruminal CP digestibility increased (P = 0.01) with block supplementation compared with control (37.5 vs. 23.6 +/- 3.7%). Addition of fermentation extract did not affect intake or digestion. Treatments did not alter ruminal pH, total VFA, or individual VFA proportions; however, ruminal ammonia increased (P = 0.01) with block supplementation. In situ disappearance rates of hay DM (3.14 +/- 0.44 %/h), NDF (3.18 +/- 0.47 %/h), and ADF (3.02 +/- 0.57 %/h) were not altered by treatment. Seaweed block increased (P = 0.01) slowly degraded CP fraction compared with POS (39.5 vs. 34.0 +/- 2.07%). Similarly, SB increased (P = 0.01) the extent of CP degradability (74.2 vs. 68.9 +/- 1.81%). No treatment effects (P = 0.24) were observed for microbial efficiency. Block supplementation increased intake, and use of brown seaweed meal seemed to have beneficial effects on forage digestibility in low-quality forage diets.  相似文献   

7.
Four wethers fitted with ruminal, duodenal and ileal cannulas were used to study effects of maturity of alfalfa hay on intake, digestion and rate of passage of nutrients in various sites of the digestive tract. Pre-, early-, and mid-bloom hays were harvested from the same field; full-bloom hay was acquired from elsewhere due to wether conditions. Dry matter intake decreased (P less than .05) as intakes of NDF and ADF increased. This was attributed to decreased digestibility and increased retention time of undigested residues. Digestion of OM in the stomach (% of intake) was 44.2, 47.4, 38.8 and 35.1 for pre-, early-, mid- and full-bloom hay, respectively. Digestion of ADF in the stomach was lower for mid-bloom than for pre-and early-bloom hay (P less than .05). Degradation of alfalfa protein in the rumen was 94, 88, 81 and 78% for pre-, early-, mid- and full-bloom hay, respectively. Concentration of ruminal NH3 N, flow of N at the duodenum, fecal N and urinary N decreased of the hay and to N intake. Digestion of N in the small intestine (g/d) decreased as maturity advanced (P less than .05). Duodenal flow of total amino acids was greater (P less than .05) when animals consumed pre-bloom hay than when they consumed more mature hays. Relative feed value calculated from the detergent fiber analysis correlated with actual value determined biologically (r = +.81). Intake and site of nutrient digestion of alfalfa hay were influenced by the stage of maturity at harvest.  相似文献   

8.
Two metabolism (4 x 4 Latin square design) experiments were conducted to evaluate the effects of corn condensed distillers solubles (CCDS) supplementation on intake, ruminal fermentation, site of digestion, and the in situ disappearance rate of forage in beef steers fed low-quality switchgrass hay (Panicum virgatum L.). Experimental periods for both trials consisted of a 9-d diet adaptation and 5 d of collection. In Exp. 1, 4 ruminally and duodenally cannulated steers (561 +/- 53 kg of initial BW) were fed low-quality switchgrass hay (5.1% CP, 40.3% ADF, 7.5% ash; DM basis) and supplemented with CCDS (15.4% CP, 4.2% fat; DM basis). Treatments included 1) no CCDS; 2) 5% CCDS; 3) 10% CCDS; and 4) 15% CCDS (DM basis), which was offered separately from the hay. In Exp. 2, 4 ruminally and duodenally cannulated steers (266.7 +/- 9.5 kg of initial BW) were assigned to treatments similar to Exp. 1, except forage (Panicum virgatum L.; 3.3% CP, 42.5% ADF, 5.9% ash; DM basis) and CCDS (21.6% CP, 17.4% fat; DM basis) were fed as a mixed ration, using a forage mixer to blend the CCDS with the hay. In Exp. 1, ruminal, postruminal, and total tract OM digestibilities were not affected (P = 0.21 to 0.59) by treatment. Crude protein intake and total tract CP digestibility increased linearly with increasing CCDS (P = 0.001 and 0.009, respectively). Microbial CP synthesis tended (P = 0.11) to increase linearly with increasing CCDS, whereas microbial efficiency was not different (P = 0.38). Supplementation of CCDS to low-quality hay-based diets tended to increase total DM and OM intakes (P = 0.11 and 0.13, respectively) without affecting hay DMI (P = 0.70). In Exp. 2, ruminal OM digestion increased linearly (P = 0.003) with increasing CCDS, whereas postruminal and total tract OM digestibilities were not affected (P > or = 0.37) by treatment. Crude protein intake, total tract CP digestibility, and microbial CP synthesis increased (P < or = 0.06) with increasing level of CCDS supplementation, whereas microbial efficiency did not change (P = 0.43). Ruminal digestion of ADF and NDF increased (P = 0.02 and 0.008, respectively) with CCDS supplementation. Based on this data, CCDS used in Exp. 2 was 86.7% rumen degradable protein. The results indicate that CCDS supplementation improves nutrient availability and use of low-quality forages.  相似文献   

9.
Six rumen-cannulated wethers were fed by a diet composed of alfalfa hay and concentrate and supplemented by 75 g Ca-soap of linseed oil (5.4% in dry matter, DM) daily. A model trial was performed to detect the effects of the Ca-soap on rumen fermentation parameters and on fibre digestion. Approximately 3 h after feeding Ca-soap, ratio of C2:C3 decreased (from 4.33 to 4.02) and the production of i- and n-butyrate and i- and n-valeriate increased by 28, 5.3, 11.76% and 6.80% respectively. Total volatile fatty acid concentration in rumen fluid did not change (126.1 vs. 126.4 mm) as a result of Ca-soap supplementation. The in vitro trial showed no detrimental influence of Ca-soap on the acid detergent fibre (ADF) degradation. Using feed samples containing Ca-soap to be incubated in tubes, ADF digestion proved to be significantly higher (p < 0.001). Approximately 14 goats (Saanen breed, 30-70 days in lactation) were used to test the effects of Ca-soap on milk composition. Their ration contained alfalfa hay, millet straw and a concentrate. In the experimental group (seven goats) the diet was supplemented with Ca-soap of linseed oil (75 g/animal/day). The milk composition was changed (slightly reduced solid content, sometimes significantly reduced milk fat contents), when Ca-soap was included in the diet of lactating goats.  相似文献   

10.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.  相似文献   

11.
Five sheep (average BW 48 kg) with ruminal, duodenal, and ileal cannulas were fed 63% roughage: 37% concentrate diets (CP = 14.5%) in a 5 x 5 Latin square design to study effects of urea and sodium bicarbonate supplementation on nutrient digestion and ruminal characteristics of defaunated sheep. Diets were fed twice daily (DMI = 1,076 g/d). Defaunation was accomplished with 25-ml doses of alkanate 3SL3/sheep daily for 3 d. Control sheep were faunated (Treatment 1) and fed soybean meal as the major N supplement. Remaining sheep were maintained defaunated and fed either the same diet as Treatment 1 (Treatment 2), Treatment 1 with urea replacing 30% of the soybean meal N (Treatment 3), or Treatment 1 with 2% sodium bicarbonate in the diet (Treatment 4). Treatment 5 was a combination of Treatments 3 and 4. Compared with the faunated control, defaunation decreased (P less than .05) total tract DM, OM, NDF, ADF, and CP digestibilities (71.5 vs 69.4, 73.8 vs 71.7, 64.6 vs 61.4, 58.7 vs 55.8, and 74.2 vs 70.6%, respectively) and average (2 to 12 h postfeeding) ruminal fluid ammonia (23.5 vs 13.7 mg/dl) and isobutyrate (.9 vs .7 mM) concentrations. However, defaunation increased (P less than .05) linoleic and linolenic acid flows (.58 vs .45 g C18:2/d; .17 vs .14 g C18:3/d) to and disappearance (.50 vs .39 g C18:2/d; .14 vs .11 g C18:3/d) from the small intestine. Urea supplementation increased (P less than .05) total tract DM (70.2 vs 68.6%) and OM (72.3 vs 71.0%) digestibilities of defaunated sheep but lowered (P less than .05) ruminal fluid isobutyrate concentration (.6 vs .8 mM). Sodium bicarbonate supplementation increased (P less than .05) ruminal fluid pH (6.4 vs 6.2), isobutyrate concentration (.75 vs .60 mM), total tract ADF digestibility (57.6 vs 54.2%), and ruminal NDF (41.6 vs 28.5%), ADF (36.6 vs 22.8%), and CP (-5.5 vs -26.8%) digestibilities in defaunated sheep. Dietary supplementation of urea or sodium bicarbonate increased nutrient digestion by defaunated sheep.  相似文献   

12.
Four ruminal cannulated wethers (65 +/- 2.4 kg) were used in a Latin square design experiment to determine the effects of water-filled bags on ruminal liquid and particulate dilution rates. Treatments consisted of ratios of water volume (liters) in bags to pretrial ruminal volume (liters) and were A) 0, B) .22, C) .44, and D) .66. Diet DM, consisting of 75% concentrate and 25% chopped alfalfa hay, was offered once daily at 2.3% of each wether's pretrial live weight. The largest water-filled bag decreased ruminal liquid volume by 68%, increased ruminal liquid dilution rate by 64%, and increased ruminal pool size of non-water soluble concentrate (NWSC) by 137% compared with the control. Ruminal dilution rate of ytterbium-marked NWSC decreased by 37% compared with the control. Ruminal fluid concentrations of NH3 N, pH, and molar ratios of acetate, propionate, butyrate, and isovalerate and plasma urea nitrogen varied over time postfeeding depending on water-filled bag size. Total tract apparent digestibility of DM, OM, ADF, starch, and energy were decreased (P less than .05) with increasing water-filled bag size in the rumen. In this study, water-filled bags acted to increase ruminal liquid dilution rate and decrease ruminal liquid volume and total tract nutrient digestibility but to retard passage of NWSC and hay fiber.  相似文献   

13.
本研究探讨了在日粮中添加尿素替代部分豆粕对山羊瘤胃发酵、上皮细胞增殖、凋亡和吸收转运能力的影响。将18 只波杂山羊随机分为3 组(n=6),分别饲喂3 种日粮:LC组(纯粗料)、MC组(30%精料)以及Urea组(1%DM缓释尿素替代部分豆粕+30%精料)。饲喂Urea组和MC组的山羊瘤胃中短链脂肪酸(SCFA)浓度、pH值均显著高于LC组,而该两组之间无显著差异;但Urea组在MC组的基础上进一步显著提高了瘤胃NH3和血浆尿素氮(BUN)浓度。因此日粮添加尿素对于瘤胃上皮中受瘤胃SCFA浓度、pH值调节的上皮生长、细胞周期、增殖凋亡相关基因和SCFA转运载体mRNA表达的影响与MC组相似,但对受瘤胃NH3调节的尿素转运、细胞内pH(pHi)调节相关蛋白mRNA表达则有显著的抑制效果,即显著高于LC组,但低于MC组。  相似文献   

14.
Four adult wethers (45 kg) with permanent ruminal and abomasal cannulae were used in a repeated measures Latin-square arrangement of treatments to quantitate the effects of diet concentrate level and sodium bicarbonate (NaHCO3) on site and extent of forage fiber digestion in the gastrointestinal tract. Experimental diets consisted of Kentucky-31 tall fescue hay, soybean meal and a semi-purified concentrate mixture in ratios of 95:5:0, 76:4:20, 57:3:40 and 38:2:60; NaHCO3 represented 0 or 7.5% of the concentrate mixture. Ruminal digestion (% of intake) of neutral detergent fiber (NDF) and hemicellulose decreased linearly (P less than .05), whereas acid detergent fiber (ADF) digestion responded in a cubic (P less than .05) fashion to increasing concentrate level; NaHCO3 improved ruminal digestion of NDF (P less than .10) and ADF (P less than .05), but not hemicellulose. Post-ruminal digestion (% of rumen non-degraded) of NDF and ADF tended to increase, whereas hemicellulose digestion responded in a cubic (P less than .05) fashion to increasing concentrate level; NaHCO3 decreased (P less than .05) post-ruminal digestion of all fiber fractions. Total tract digestion of NDF and ADF showed a cubic (P less than .05) response, whereas hemicellulose digestion responded in a quadratic (P less than .05) fashion to increasing concentrate level; NaHCO3 had no effect on total tract digestion of any fiber fraction. Correlations of ruminal hemicellulose digestion with mean pH (r = .33; P = .07) and minimum pH (r = .30; P = .09) were attained in a 24-h feeding cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Four ruminally and duodenally cannulated beef steers (492 +/- 30 kg) were used in a 4 x 4 Latin square design to evaluate the effect of undegradable intake protein (UIP) supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay. The steers were offered chopped (10.2 cm in length) grass hay (6.0% CP) ad libitum and 1 of 4 supplements. Supplemental treatments (1,040 g of DM daily), offered daily at 0800, were control (no supplement) or low, medium, or high levels of UIP (the supplements provided 8.3, 203.8, and 422.2 g of UIP/ d, respectively). The supplements were formulated to provide similar amounts of degradable intake protein (22%) and energy (1.77 Mcal of NE(m)/kg). Blood samples were taken at -2, -0.5, 1, 2, 4, 8, 12, and 24 h after supplementation on d 1 (intensive sampling) and at -0.5 h before supplementation on d 2, 3, 4, and 5 (daily sampling) of each collection period. Contrasts comparing control vs. low, medium, and high; low vs. medium and high; and medium vs. high levels of UIP were conducted. Apparent and true ruminal OM and N digestion increased (P < 0.03) in steers fed supplemental protein compared with controls, but there were no differences (P > 0.26) among supplemental protein treatments. There were no differences (P > 0.11) among treatments for NDF or ADF digestion, or total ruminal VFA or microbial protein synthesis. Ruminal pH was not different (P = 0.32) between control and protein-supplemented treatments; however, ruminal pH was greater (P = 0.02) for supplementation with medium and high compared with low UIP. Daily plasma insulin concentrations were increased (P = 0.004) in protein-supplemented steers compared with controls and were reduced (P = 0.003) in steers fed low UIP compared with steers fed greater levels of UIP. Intensive and daily plasma urea N concentrations were increased (P < 0.01) in protein-supplemented steers compared with controls and increased (P < 0.02) for intensive and daily sampling, respectively, in steers supplemented with medium and high UIP compared with low UIP. Supplemental protein increased apparent and true ruminal OM and N digestion, and medium and high levels of UIP increased ruminal pH compared with the low level. An increasing level of UIP increases urea N and baseline plasma insulin concentrations in steers fed low-quality hay.  相似文献   

16.
Four ruminally and duodenally cannulated crossbred beef steers (397+/-55 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of increasing level of field pea supplementation on intake, digestion, microbial efficiency, ruminal fermentation, and in situ disappearance in steers fed moderate-quality (8.0% CP, DM basis) grass hay. Basal diets, offered ad libitum twice daily, consisted of chopped (15.2-cm screen) grass hay. Supplements were 0, 0.81, 1.62, and 2.43 kg (DM basis) per steer daily of rolled field pea (23.4% CP, DM basis) offered in equal proportions twice daily. Steers were adapted to diets on d 1 to 9; on d 10 to 14, DMI were measured. Field pea and grass hay were incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to evaluate the effects of increasing field pea level. Total DMI and OMI increased quadratically (P = 0.09), whereas forage DMI decreased quadratically (P = 0.09) with increasing field pea supplementation. There was a cubic effect (P < 0.001) for ruminal pH. Ruminal (P = 0.02) and apparent total-tract (P = 0.09) NDF disappearance decreased linearly with increasing field pea supplementation. Total ruminal VFA concentrations responded cubically (P = 0.008). Bacterial N flow (P = 0.002) and true ruminal N disappearance (P = 0.003) increased linearly, and apparent total-tract N disappearance increased quadratically (P = 0.09) with increasing field pea supplementation. No treatment effects were observed for ruminal DM fill (P = 0.82), true ruminal OM disappearance (P = 0.38), apparent intestinal OM digestion (P = 0.50), ruminal ADF disappearance (P = 0.17), apparent total-tract ADF disappearance (P = 0.35), or in situ DM disappearance of forage (P = 0.33). Because of effects on forage intake and ruminal pH, field peas seem to act like cereal grain supplements when used as supplements for forage-based diets. Supplementing field peas seems to effectively increase OM and N intakes of moderate-quality grass hay diets.  相似文献   

17.
Sheep were used to determine the effects of dietary supplementation with readily-fermentable carbohydrates on Mg, Ca, K and P utilization. In each of two metabolism trials, 15 mature, crossbred wethers (average weight, 49.2 kg) were allotted to five dietary treatments consisting of 800 g/d of orchardgrass (Dactylis glomerata, L.) hay alone, or supplemented with 450 g/d of either glucose, sucrose, lactose or starch. Each trial consisted of a 5-d adjustment period, a 10-d preliminary period and a 10-d collection period. Compared with wethers fed hay alone, supplementation with each kind of carbohydrate to the diet decreased (P less than .05) fecal Mg excretion and increased (P less than .05) apparent absorption and retention of Mg. Apparent absorption of the Ca was lower (P less than .05) in wethers fed lactose and tended to be decreased by glucose, sucrose and starch supplementation. Calcium retention was lower (P less than .05) in wethers fed sucrose and lactose, compared with those fed hay alone. All types of supplementary carbohydrates depressed (P less than .05) apparent absorption and urinary excretion of K. Serum Mg and Ca were not affected and serum K was depressed (P less than .05) by carbohydrate supplementation. Ruminal fluid pH was decreased (P less than .05) by glucose and lactose supplementation, and addition of these carbohydrates tended to decrease molar proportions of acetate and increase those of propionate and butyrate, compared with sheep fed hay alone. Sucrose addition decreased (P less than .05) acetate and increased (P less than .05) butyrate molar proportions in the ruminal fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Roughage sources were compared in flaked milo-based diets that contained 35% chopped alfalfa hay (AH, control diet) or with cottonseed hulls (CSH) or chopped wheat straw (WS) replacing half the AH. Latin square experiments were used to measure total tract digestion coefficients, particulate passage rates (rare earths), liquid turnover rates (Co-EDTA), and rumination time in six growing steers (Exp. 1) and in situ digestion of DM and NDF, ruminal pH and ruminal DM distribution in three mature, ruminally cannulated steers (Exp. 2). Rates of passage from Exp. 1 and rates and extents of digestion from Exp. 2 were used to calculate apparent extent of ruminal digestion (AED). In Exp. 1, total tract digestibilities of DM and NDF were lower (P less than .05) by 7 and 22%, respectively, when CSH, but not WS, were included in the diet. Digestibility of cell solubles was not different (P greater than .10) among diets. Inclusion of WS increased (P less than .10) rumination time by 36%, and CSH increased intake (P less than .10) by 17% over the control diet. In Exp. 2, there tended to be (P less than .20) increased in situ digestion of milo and AH in the WS diet. Measures of ruminal pH were similar for all diets. The AED for AH and milo DM and NDF, and the proportion of total tract NDF digestion occurring in the rumen (50, 47 and 62% for control, CSH and WS diets, respectively), were highest (P less than .05) for the WS diet. This resulted in similar total tract digestibilities for the WS and AH diets. The two low-digestibility roughages had different effects at this concentrate level; wheat straw enhanced apparent extent of ruminal digestion for NDF of other ingredients in the mixed diets, but cottonseed hulls did not.  相似文献   

19.
The effects of supplementing ewe diets with either DL‐methionine (DL‐Met) or 2‐hydroxy‐4 (methylthio) butanoic acid isopropyl ester (HMBi) were investigated on ruminal in situ degradability of grain and forage diets, in vivo digestibility, rumen fermentation, blood metabolites and antioxidant status. Six ruminally cannulated ewes were used in a replicated 3 × 3 Latin square design with 28‐day periods. The dietary treatments were as follows: (i) no supplemental Met (control; CON), (ii) DL‐Met at 1.2 g/kg DM intake and (iii) HMBi at 1.8 g/kg dry matter (DM) intake. Corn grain, barley grain and alfalfa hay were evaluated for their ruminal degradability by both in situ incubation and effective degradability measurements of DM, neutral detergent fibre (NDF) and acid detergent fibre (ADF). Compared to other treatments, HMBi supplementation increased (p < 0.05) the digestibility of organic matter, crude protein and NDF and also tended (p = 0.08) to increase the digestibility of DM and ADF. Moreover, HMBi supplementation increased (p < 0.01) total VFA concentrations, the molar proportions of valerate and iso‐butyrate in the rumen. Compared to the CON treatment, DL‐Met and HMBi treatments tended (p = 0.08) to increase the molar proportion of acetate but decreased (p < 0.05) ruminal ammonia‐N concentration. Ewes supplemented with HMBi and DL‐Met recorded greater (p < 0.05) serum concentrations of glutathione peroxidase, total antioxidant capacity and superoxide dismutase than the CON treatment. Serum concentrations of glucose, total protein, albumin, high‐density lipoprotein and very low‐density lipoprotein were greater (p < 0.01) and serum urea nitrogen (p < 0.05), malonyl dialdehyde and triglyceride were lower (p < 0.02) in the HMBi and DL‐Met animals than in the CON ewes. The results concluded that HMBi is a very effective form of dietary Met supplementation for ewes with a positive effect on digestion, rumen fermentation and serum antioxidant function.  相似文献   

20.
The effects of supplying increasing ruminal doses of exogenous polysaccharide-degrading enzymes (EPDE) on rumen fermentation and nutrient digestion were studied using eight ruminally cannulated heifers, four of which were also duodenally cannulated, in a replicated Latin square. The heifers were fed a diet of 85.5% rolled barley grain and 14% barley silage (DM basis), and once daily they were given intraruminal doses of 0 (Control), 100, 200, or 400 g of a preparation containing polysaccharide-degrading enzymes. Enzyme treatment decreased ruminal pH (linear, P<.001) and increased ammonia N (quadratic, P<.001) concentration. The ruminally soluble fraction and effective degradability of feed DM in situ were increased (quadratic response, P<.001) by enzyme treatment. Ruminal administration of EPDE increased ruminal fluid carboxymethylcellulase and xylanase activities linearly (P<.001) and beta-glucanase activity quadratically (P<.01), decreased (quadratic response, P<.05) ruminal fluid viscosity, and did not affect (P>.05) ruminal fluid amylase activity. Elevated levels of fibrolytic activities in the rumen resulted in increased (quadratic, P<.001) carboxymethylcellulase, xylanase, and beta-glucanase (P<.01) activities in duodenal digesta. Duodenal amylase activity and reducing sugar concentration were also increased (quadratic responses, P<.001 and P<.05, respectively) by EPDE. Xylanase activity of fecal DM was increased linearly (P<.05) with increasing ruminal EPDE levels. Apparent digestibilities of DM, crude protein, and NDF were not affected by EPDE supplementation. Enzyme treatment did not affect (P>.05) urinary excretion of allantoin and uric acid, or concentrations of glucose and urea in blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号