首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Objective To assess the effectiveness of a detomidine infusion technique to provide standing chemical restraint in the horse. Design Retrospective study. Animals Fifty‐one adult horses aged 9.5 ± 6.9 years (range 1–23 years) and weighing 575 ± 290.3 kg. Methods Records of horses presented to our clinic over a 3‐year period in which a detomidine infusion was used to provide standing chemical restraint were reviewed. Information relating to the types of procedure performed, duration of infusion, drug dosages and adjunct drugs administered was retrieved. Results Detomidine was administered as an initial bolus loading dose (mean ± SD) of 7.5 ± 1.87 µg kg?1. The initial infusion rate was 0.6 µg kg?1 minute?1, and this was halved every 15 minutes. The duration of the infusion ranged from 20 to 135 minutes. Twenty horses received additional detomidine or butorphanol during the procedure. All horses undergoing surgery received local anesthesia or epidural analgesia in addition to the detomidine infusion. A wide variety of procedures were performed in these horses. Conclusions Detomidine administered by infusion provides prolonged periods of chemical restraint in standing horses. Supplemental sedatives or analgesics may be needed in horses undergoing surgery. Clinical relevance An effective method that provides prolonged periods of chemical restraint in standing horses is described. The infusion alone did not provide sufficient analgesia for surgery and a significant proportion of animals required supplemental sedatives and analgesics.  相似文献   

2.
3.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

4.
OBJECTIVE: To determine the cardiovascular effects of 60 minutes of abdominal insufflation with CO2 to an intra-abdominal pressure of 15 mm Hg in standing horses receiving a constant rate infusion of detomidine. ANIMALS: 5 horses. PROCEDURE: Horses were randomly allocated into treatment or control groups. A washout period of a minimum of 7 days separated the 2 experimental periods of the crossover study. Catheters were placed into the right atrium, pulmonary artery, jugular vein, and right transverse facial artery after lidocaine infiltration. All horses were sedated with detomidine (8.54 microg/kg/h, i.v.). Horses in the treatment group received abdominal insufflation with CO2 via a laparoscopic cannula to a final and constant intra-abdominal pressure of 15 mm Hg for 60 minutes. Systemic arterial pressure, right atrial pressure, heart rate, cardiac output, core body temperature, and the pH and gas tensions of arterial and mixed venous blood were obtained. Cardiac index and systemic vascular resistance were calculated. Data were collected in 3 stages: preinsufflation (-10 and -5 minutes), insufflation (0, 15, 30, 45, and 60 minutes), and postinsufflation (70 and 80 minutes). The quality of sedation and level of analgesia were determined. RESULTS: The PaO2 of horses in the treatment group was significantly higher after 60 minutes of pneumoperitoneum than in the control group. Core body temperature decreased significantly from baseline in both groups. CONCLUSIONS AND CLINICAL RELEVANCE: A 60-minute period of abdominal insufflation to an intra-abdominal pressure of 15 mm Hg did not induce significant cardiovascular abnormalities in healthy horses.  相似文献   

5.
The aim of this investigation was to determine and evaluate the sedative, analgesic, clinicophysiological and haematological effects of intravenous (i.v.) injection of detomidine, detomidine‐butorphanol, romifidine and romifidine‐butorphanol. Six standing donkeys were used. Each donkey received 4 i.v. treatments and the order of treatment was randomised with a one‐week interval between each treatment. We found that i.v. injection of a combination of detomidine‐butorphanol or romifidine‐butorphanol produced potent neuroleptanalgesic effects thus providing better, safe and effective sedation with complete analgesia in standing donkeys compared with injection of detomidine or romifidine alone. The changes and reduction in pulse rate were within acceptable limits. The changes in clinicophysiological, haematological and biochemical values were mild and transient in these clinically healthy donkeys.  相似文献   

6.
Butorphanol and detomidine constitute an effective combination for sedation and analgesia in horses. This trial was undertaken to assess the effectiveness of this combination in donkeys. The detomidine and butorphanol were given intravenously one after the other. A dose of 10 microg/kg of detomidine and 25 microg/kg of butorphanol was used. Sedation is easily extended by additional doses of butorphanol. The average dose of detomidine was 11.24 microg/kg and that of butorphanol was 28.0 microg/kg. Four donkeys in the detomidine group required additional sedation and analgesia. Detomidine alone did not totally eliminate coronary band pain. Heart rates dropped significantly in the first minute after the injection of the combination. One donkey developed an atrioventricular block, while another developed a sino-atrial block. Four donkeys developed a Cheyne-Stokes respiratory pattern. The combination of detomidine and butorphanol is an effective combination for sedation and analgesia of donkeys for standing procedures.  相似文献   

7.
The aim of this randomised, observer-blinded, crossover study was to compare the effects of four treatments, administered intravenously to six horses: saline and saline; 10 μg/kg detomidine and 7.5 μg/kg buprenorphine; 20 μg/kg detomidine and 7.5 μg/kg buprenorphine; and 20 μg/kg detomidine and 10 μg/kg buprenorphine. Sedation was subjectively assessed and recorded on a visual analogue scale. Peak sedation and duration of sedation were investigated using a univariate general linear model with post-hoc Tukey tests (P<0.05). Increasing the dose of detomidine from 10 to 20 μg/kg increased the degree of sedation when administered with the same dose of buprenorphine (7.5 μg/kg). When administered with 20 μg/kg detomidine, increasing the dose of buprenorphine from 7.5 to 10 μg/kg did not influence the degree of sedation achieved.  相似文献   

8.
ObjectiveTo compare the analgesic efficacy of buprenorphine plus detomidine with that of morphine plus detomidine when administered epidurally in horses undergoing bilateral stifle arthroscopy.Study designProspective, randomized, blinded clinical trial.AnimalsTwelve healthy adult horses participating in an orthopedic research study. Group M (n = 6) received morphine (0.2 mg kg?1) and detomidine (0.15 mg kg?1) epidurally; group B (n = 6) received buprenorphine (0.005 mg kg?1) and detomidine (0.15 mg kg?1) epidurally.MethodsHorses received one of two epidural treatments following induction of general anesthesia for bilateral stifle arthroscopy. Heart rate (HR), mean arterial blood pressure (MAP), end-tidal CO2 (Pe’CO2), and end-tidal isoflurane concentrations (E’Iso%) were recorded every 15 minutes following epidural administration. Post-operative assessment was performed at 1, 2, 3, 6, 9, 12, and 24 hours after standing; variables recorded included HR, respiratory rate (fR), abdominal borborygmi, defecation, and the presence of undesirable side effects. At the same times post-operatively, each horse was videotaped at a walk and subsequently assigned a lameness score (0-4) by three ACVS diplomates blinded to treatment and who followed previously published guidelines. Nonparametric data were analyzed using Wilcoxon’s rank-sum test. Inter- and intra-rater agreement were determined using weighted kappa coefficients. Statistical significance was set at p = 0.05.ResultsNo statistically significant differences were found between groups with respect to intra-operative HR, MAP, E’Iso%, or post-operative HR, gastrointestinal function and cumulative median lameness scores. Post-operative fR in group B [24 (12-30), median (range)] breaths per minute was significantly higher than in group M [18 (15-20)] breaths per minute, p = 0.04.Conclusions and clinical relevanceIn horses undergoing bilateral stifle arthroscopy, these doses of buprenorphine plus detomidine injected epidurally produced analgesia similar in intensity and duration to that of morphine plus detomidine injected epidurally.  相似文献   

9.
OBJECTIVES: To determine whether epidural administration of detomidine hydrochloride to cattle induced analgesia of the perineum and to compare analgesic and systemic effects of epidural versus i.m. administration of detomidine at a dose of 40 microg/kg in cattle. ANIMALS: 18 healthy adult cows. PROCEDURE: 6 cows were given detomidine by epidural administration, 6 were given detomidine i.m., and 6 (control group) were not given detomidine. Analgesia was assessed by determining responses to needle pinpricks in the perineum and flank and by applying electrical stimuli to the perineum and flank and determining the voltage that induced an avoidance response. Degree of sedation and ataxia were scored, and mean arterial pressure, heart rate, respiratory rate, and frequency of ruminal contractions were measured. RESULTS: Epidural and i.m. administration of detomidine induced comparable degrees of analgesia of the perineum and flank, accompanied by moderate sedation and ataxia, hypertension, cardiorespiratory depression, and rumen hypomotility. CONCLUSIONS AND CLINICAL RELEVANCE: Epidural and i.m. administration of detomidine at a dose of 40 microg/kg induced similar analgesic and systemic effects in cattle. Epidural administration of detomidine did not appear to be advantageous over i.m. administration.  相似文献   

10.
Kaukinen, H., Aspegrén, J., Hyyppä, S., Tamm, L., Salonen, J. S. Bioavailability of detomidine administered sublingually to horses as an oromucosal gel. J. vet. Pharmacol. Therap. 34 , 76–81. The objective of the study was to determine the absorption, bioavailability and sedative effect of detomidine administered to horses as an oromucosal gel compared to intravenous and intramuscular administration of detomidine injectable solution. The study was open and randomized, with three sequences crossover design. Nine healthy horses were given 40 μg/kg detomidine intravenously, intramuscularly or administered under the tongue with a 7‐day wash‐out period between treatments. Blood samples were collected before and after drug administration for the measurement of detomidine concentrations in serum. The effects of the route of administration on heart rate and rhythm were evaluated and the depth of sedation assessed. Mean (±SD) bioavailability of detomidine was 22% (±5.3%) after sublingual administration and 38.2% (±7.9%) after intramuscular administration. The sedative effects correlated with detomidine concentrations regardless of the route of administration. We conclude that less detomidine is absorbed when given sublingually than when given intramuscularly, because part of it does not reach the circulation. Sublingual administration of detomidine oromucosal gel at 40 μg/kg produces safe sedation in horses. Slow absorption leads to fewer and less pronounced adverse effects than the more rapid absorption after intramuscular injection.  相似文献   

11.
The aim of this randomised, observer-blinded, crossover study was to compare the effects of six treatments, administered intravenously to six horses: saline and saline (S/S); detomidine and saline (D/S); detomidine and 5 μg/kg buprenorphine (D/B5); detomidine and 7.5 μg/kg buprenorphine (D/B7.5); detomidine and 10 μg/kg buprenorphine (D/B10); and detomidine and 25 μg/kg butorphanol (D/BUT). The detomidine dose was 10 μg/kg for all treatments in which it was included. Sedation was subjectively assessed and recorded on a visual analogue scale. Peak sedation, duration of sedation and the area under the curve (AUC) for sedation scores were investigated using a univariate general linear model with post-hoc Tukey tests (P<0.05). Peak sedation and duration of sedation were statistically significantly different between treatments (P<0.001). No sedation was apparent after administration of S/S. The AUC was significantly different between treatments (P=0.010), with S/S being significantly different from D/S, D/BUT, D/B5 and D/B7.5, but not D/B10 (P=0.051).  相似文献   

12.
13.
ObjectiveTo describe selected pharmacodynamic effects of detomidine and yohimbine when administered alone and in sequence.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV, 2) 0.2 mg kg?1 yohimbine IV and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV. Each horse received all three treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume and plasma proteins were monitored.ResultsYohimbine rapidly reversed the sedative effects of detomidine in the horse. Additionally, yohimbine effectively returned heart rate and the percent of atrio-ventricular conduction disturbances to pre-detomidine values when administered 15 minutes post-detomidine administration. Plasma glucose was significantly increased following detomidine administration. The detomidine induced hyperglycemia was effectively reduced by yohimbine administration. Effects on packed cell volume and plasma proteins were variable.Conclusions and clinical relevanceIntravenous administration of yohimbine effectively reversed detomidine induced sedation, bradycardia, atrio-ventricular heart block and hyperglycemia.  相似文献   

14.
The effects of sedation with detomidine on oesophageal function were assessed by contrast radiography in 10 healthy adult thoroughbred horses. Barium swallows were monitored by means of image intensification, first without sedation and then after the intravenous administration of detomidine at doses of 10 and 20 micrograms/kg bodyweight. The transit time of contrast agent to the oesophageal hiatus was recorded and each swallow was scored for markers of oesophageal dysfunction. Analysis of the data indicated that there were highly significant dose dependent increases in the transit time, the retention of barium within the longitudinal mucosal folds, and retrograde peristalsis and pooling of contrast agent within the oesophagus at both the thoracic inlet and caudal to the base of the heart. The degree of gastrooesophageal reflux was not affected at either dosage. These changes in oesophageal function were similar to those recorded from cases of grass sickness and indicate that care should be taken in the interpretation of studies of swallowing in animals that have been given detomidine before a radiographic examination.  相似文献   

15.
Four hundred and ninety horses were anaesthetised with halothane for clinical surgical or diagnostic procedures following induction with either detomidine/keta-mine, detomidine/thiopentone, xylazine/ketamine or guaiphenesin/thiopentone. Routine clinical monitoring was performed during anaesthesia. All horses developed hypotension (mean arterial pressures below 80 mm Hg) and respiratory depression (significant fall in respiratory rate and arterial carbon dioxide tension above 7 kPa (53 mm Hg)) consistent with the recognised effects of halothane. All anaesthetic procedures incorporating xylazine or detomidine resulted in lower pulse rates (28–35 per min) than after guaiphenesin/thiopentone (36–44 per min) and there was greater respiratory depression after techniques employing thiopentone rather than keta-mine. Development of hypotension was delayed after techniques using the α2 adrenoceptor agonist agents (xylazine and detomidine), particularly detomidine. Prernedication with acepromazine did not affect any of the physiological variables measured after techniques employing detomidine. Recovery to standing was fastest after xylazine/ketamine (31±1 min) and slowest after detomidine/thiopentone (53±2 min). Recovery quality was best after detomidine/thiopentone and all techniques employing an α2 adrenoceptor agonist agent resulted in smoother recovery than after guaiphenesin/thiopentone. This study demonstrates that most of the physiological effects of individual induction agents are overridden by the cardiovascular and respiratory depressant effects of halothane. The study also shows that detomidine is an acceptable sedative for use before general anaesthesia with halothane in horses.  相似文献   

16.
OBJECTIVE: To determine sedative, cardiorespiratory and metabolic effects of xylazine hydrochloride, detomidine hydrochloride, and a combination of xylazine and acepromazine administered i.v. at twice the standard doses in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill to establish a uniform level of fitness. Each horse ran 4 simulated races, with a minimum of 14 days between races. Simulated races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until they were fatigued or for a maximum of 2 minutes. One minute after the end of exercise, horses were treated i.v. with xylazine (2.2 mg/kg of body weight), detomidine (0.04 mg/kg), a combination of xylazine (2.2 mg/kg) and acepromazine (0.04 mg/kg), or saline (0.9% NaCl) solution. Treatments were randomized so that each horse received each treatment once, in random order. Cardiopulmonary indices were measured, and samples of arterial and venous blood were collected immediately before and at specific times for 90 minutes after the end of each race. RESULTS: All sedatives produced effective sedation. The cardiopulmonary depression that was induced was qualitatively similar to that induced by administration of these sedatives to resting horses and was not severe. Sedative administration after exercise prolonged the exercise-induced increase in body temperature. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of xylazine, detomidine, or a combination of xylazine-acepromazine at twice the standard doses produced safe and effective sedation in horses that had just undergone a brief, intense bout of exercise.  相似文献   

17.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

18.
Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.  相似文献   

19.
This study investigated the sedative, cardiopulmonary, and gastrointestinal effects produced by buprenorphine and xylazine given in combination to horses. Six healthy adult horses underwent 4 randomized treatments, with an interval of 1 wk between treatments. A control group was given a saline solution intravenously (IV) and the experimental groups received buprenorphine [10 μg/kg bodyweight (BW)] in combination with 1 of 3 different doses of xylazine: 0.25 mg/kg BW (BX25), 0.50 mg/kg BW (BX50), or 0.75 mg/kg BW (BX75), all of them by IV. Cardiopulmonary parameters were evaluated for 120 min after the drugs were administered and intestinal motility was observed for 12 h after treatment. Sedation was found to be dose-dependent in all groups receiving buprenorphine and xylazine and it was observed that the heart rate decreased in the first 5 min and increased at the end of the sedation period. Arterial blood gas tension analyses showed minimal alterations during the experiment. Gastrointestinal hypomotility was observed for up to 8 h. The combination of buprenorphine and 0.50 mg/kg BW of xylazine (BX50) provided a 30-minute period of sedation without intense ataxia and maintained cardiopulmonary parameters within acceptable limits for the species.  相似文献   

20.
REASONS FOR PERFORMING STUDY: Abdominal insufflation is performed routinely during laparoscopy in horses to improve visualisation and facilitate instrument and visceral manipulations during surgery. It has been shown that high-pressure pneumoperitoneum with carbon dioxide (CO2) has deleterious cardiopulmonary effects in dorsally recumbent, mechanically ventilated, halothane-anaesthetised horses. There is no information on the effects of CO2 pneumoperitoneum on cardiopulmonary function and haematology, plasma chemistry and peritoneal fluid (PF) variables in standing sedated horses during laparoscopic surgery. OBJECTIVES: To determine the effects of high pressure CO2 pneumoperitoneum in standing sedated horses on cardiopulmonary function, blood gas, haematology, plasma chemistry and PF variables. METHODS: Six healthy, mature horses were sedated with an i.v. bolus of detomidine (0.02 mg/kg bwt) and butorphanol (0.02 mg/kg bwt) and instrumented to determine the changes in cardiopulmonary function, haematology, serum chemistry and PF values during and after pneumoperitoneum with CO2 to 15 mmHg pressure for standing laparoscopy. Each horse was assigned at random to either a standing left flank exploratory laparoscopy (LFL) with CO2 pneumoperitoneum or sham procedure (SLFL) without insufflation, and instrumented for measurement of cardiopulmonary variables. Each horse underwent a second procedure in crossover fashion one month later so that all 6 horses had both an LFL and SLFL performed. Cardiopulmonary variables and blood gas analyses were obtained 5 mins after sedation and every 15 mins during 60 mins baseline (BL), insufflation (15 mmHg) and desufflation. Haematology, serum chemistry analysis and PF analysis were performed at BL, insufflation and desufflation, and 24 h after the conclusion of each procedure. RESULTS: Significant decreases in heart rate, cardiac output and cardiac index and significant increases in mean right atrial pressure, systemic vascular resistance and pulmonary vascular resistance were recorded immediately after and during sedation in both groups of horses. Pneumoperitoneum with CO2 at 15 mmHg had no significant effect on cardiopulmonary function during surgery. There were no significant differences in blood gas, haematology or plasma chemistry values within or between groups at any time interval during the study. There was a significant increase in the PF total nucleated cell count 24 h following LFL compared to baseline values for LFL or SLFL at 24 h. There were no differences in PF protein concentrations within or between groups at any time interval. CONCLUSIONS: Pneumoperitoneum with CO2 during standing laparoscopy in healthy horses does not cause adverse alterations in cardiopulmonary, haematology or plasma chemistry variables, but does induce a mild inflammatory response within the peritoneal cavity. POTENTIAL RELEVANCE: High pressure (15 mmHg) pneumoperitoneum in standing sedated mature horses for laparoscopic surgery can be performed safely without any short-term or cumulative adverse effects on haemodynamic or cardiopulmonary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号