首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porosity and gas diffusion have been measured within dry crumbs sieved from the horizons of one soil from each of the Hanslope, Ragdale, Evesham, Denchworth, Flint and Salop series. Crumb porosities, ?c, ranged from 0.19 to 0.33, dimensionless gas diffusivities, Dc/D0, from 0.015 to 0.098, and the effectiveness of unit pore space for diffusion, given by αc= (Dc/D0)/?c, from 0.06 to 0.29. Values of ?c and Dc/D0 were used to calculate complexity factors kc for the crumb pores. The results are discussed in terms of soil texture, pore size, ease of soil management, and the frequency and intensity of wetting and drying of the soil in each horizon. None of the results suggests why the soils of the Ragdale, Denchworth and Salop series should be more difficult to manage than the others.  相似文献   

2.
Equivalent salt solution series have been previously defined as solutions with combinations of sodium absorption ratio (SAR) and electrolyte concentration (Ec) producing the same extent of clay swelling in a given soil. The present study shows that there is a high (r2>0.96) positive correlation between log Ec and log SAR of equivalent salt solutions series, in the equation: where a1 and b1 are constants for each equivalent salt solution series for a given soil. Log a1 could also be represented as a linear function of b1 resulting in the equation: where a2 and b2 are constants for a given soil. Solving this equation using any given value of b1 yields the combinations of SAR and Ec which make up each equivalent salt solution series for a given soil. The relationship between log a1 and b2 for three soils from western United States, namely Waukena, Pachappa and Grangeville, was similar, with their combined data having a r2 value of 0.96. This indicated that a single set of equivalent salt solution series values could be used for these three soils which have different clay contents and clay mineralogy. Prediction of hydraulic conductivity decreases with Ec reduction at given values of SAR in red-brown and alluvial soils from southern Tasmania, using the equivalent salt solution series values for Waukena soil, showed similar patterns to measured values and also to those predicted using the equivalent salt solution values applicable to the respective Tasmanian soils. Thus, available data indicate that the same set of equivalent salt series could be applied to the five soils studied. If further testing shows that a single set of equivalent salt solutions values could be applied to all or large groups of soils, this would facilitate the application of the equivalent salt solution concept to predict salt solution flow in the field.  相似文献   

3.
The development of soil structure units with defined forms and dimensions (e.g. platy by soil compaction or prismatic up to subangular-blocky by swelling–shrinkage processes) can lead to direction-dependent behaviour of mechanical and hydraulic properties. However, little research has investigated direction-dependent behaviour directly. Undisturbed samples were collected at different horizons and orientations (vertical and horizontal) of Stagnic Luvisols derived from glacial till (Weichselian moraine region in Northern Germany). A direct shear test determined the cohesion (c) and the angle of internal friction (φ). The water retention curve (WRC), the saturated hydraulic conductivity (ks) and the air permeability (ka) were also measured. The air-filled porosity (a) was determined and pore continuity indices (N) and blocked porosities (b) were derived from the relationship between ka and a.Although the pore volume as a scalar is isotrop, the saturated hydraulic conductivity and air permeability can be anisotropic. In the seedbed (SB) and plough pan (PP) of conventionally managed soils the effective porosity is non-direction-dependent, however, differences in ks as a function of sampling direction can reach one order of magnitude in PP (ksh > ksv). The shear strength parameters do not present a significant anisotropy, although, a pronounced spatial orientation of soil aggregates (e.g. induced by soil compaction in a plough pan) lead to direction-dependent shear strength (by σn: 10 kPa, σtv: 12 kPa and σth: 19 kPa). This behaviour was especially observed in pore continuity indices (e.g. vertical and horizontal oriented aggregates observed in Bvg and PP presented bv < bh and bv > bh, respectively) showing that the identification of soil structure can be used as the first parameter to estimate if hydraulic properties present a direction-dependent behaviour at the scale of the soil horizon, which is relevant in modelling transport processes.  相似文献   

4.
We studied the interaction of lead with seven Portuguese soils with different physical and chemical properties in order to elucidate more fully the behaviour of Pb in soil. We studied these adsorption phenomena by voltammetric titrations with differential pulse polarography (DPP) at different pH (6.0–7.2) and ionic strengths, I (0.010–0.50 m ) in order to clarify some of the factors that might control soil sorption capacity for Pb. From the voltammetric data, average formation constants, , and binding capacity, Cc, have been estimated according to a surface complexation model based on Scatchard and van den Berg–R?zic methods. Linear Scatchard and van den Berg–R?zic plots (r≥ 0.99) indicated that the results can be interpreted according to the existence of just one predominant active site for Pb(II) adsorption. The values from both procedures () agreed in all cases (r= 0.938, n= 66, P < 0.001). The same happened with Cc values that were statistically equivalent (r= 0.9998; n= 66; P < 0.001). The Cc values were found to depend on the pH and I, as well as on the soil properties. Either Langmuir or Freundlich isotherms fitted the experimental data well (r > 0.90, P < 0.05). The lead binding capacities were strongly and significantly correlated (P < 0.05) with pH, cation exchange capacity, organic carbon, loss‐on‐ignition, total Al2O3 content, extractable forms of Al and pyrophosphate extractable Fe, [Fep]. From a forward, stepwise regression model we concluded that [Al2O3], [Pb′] (concentration of labile lead in solution), [Fep], pH and I are able to explain more than 99.7% of the variation in lead sorption in our soils. The soils’ surface groups with special affinity to Pb(II) are in the inorganic fraction associated with aluminium.  相似文献   

5.
Summary The effect of the air-filled porosity and organic-matter content of the soil on denitrification with non-limiting NO3 concentrations was studied in unplanted pots and in pots sown to wheat. Four organic-C levels were established by using pure and mixed soil material from a Bt horizon with 0.12% organic-C and an Ap horizon with 1.31% organic C from a mollic luvisol. A range of air-filled porosities from 3% to 25% during denitrification assays was obtained by varying soil compaction. Beyond a 10% to 12% threshold of air-filled porosity the denitrification rates were at an insignificant and constant level in planted as well as in unplanted soil for all organic-C contents. Below this threshold denitrification increased exponentially with decreasing air-filled porosity. In planted soil the excess of denitrification over that of unplanted soil was inversely related to air-filled porosity. This rhizosphere effect on denitrification, which was confined to air-filled porosities lower than 10%–12%, became significantly greater with increasing soil organic-C content. The findings indicate that root dependent respiration amplifies O2 depletion in the rhizosphere and may accelerate the onset of denitrification in planted soil.  相似文献   

6.
The indiscriminate management and use of soils without moisture control has changed the structure of it due to the increment of the traffic by agricultural machines through the years, causing in consequence, a soil compaction and yield reduction in the areas of intensive traffic. The purpose of this work was to estimate and to evaluate the performance of preconsolidation pressure of the soil and shear stress as indicators of changes on soil structure in fields cropped with sugarcane, as well as the impact of management processes in an Eutrorthox soil structure located in Sao Paulo State. The experimental field was located in Piracicaba's rural area (Sao Paulo State, Brazil) and has been cropped with sugarcane, in the second harvest cycle. The soil was classified by EMBRAPA [EMBRAPA, 1999. Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos, Embrapa, Brasília, 412 pp.] as an Eutrorthox. Undisturbed samples were collected and georeferenced in a grid of 60 m × 60 m from two depths: 0–0.10 m (superficial layer – SL) and in the layer of greatest mechanical resistance (LGMR), previously identified by cone index (CI). The investigated variables were pressure preconsolidation (σp), apparent cohesion (c) and internal friction angle (). The conclusions from the results were that the SLSC was predicted satisfactorily from σp as a function of soil moisture; thus, decisions about machinery size and loading (contact pressures) can be taken. Apparent cohesion (c), internal friction angle () and the Coulomb equation were significantly altered by traffic intensity. The σp, c and maps were shown to be important tools to localize and visualize soil compaction and mechanical resistance zones. They constitute a valuable resource to evaluate the traffic impact in areas cropped with sugarcane in State of Sao Paulo, Brazil.  相似文献   

7.
The relationship between structure and the hydraulic conductivity of soil   总被引:7,自引:0,他引:7  
A random fractal matrix comprising a hierarchical aggregation of primary structural elements is used to capture the characteristics of a heterogeneous soil structure with a tortuous pore space. The influence of heterogeneity of both the solid matrix and the pore space, as well as the shape of the pore boundary, on the saturated and unsaturated hydraulic conductivity is studied. For such random structures, the fractal (Hausdorff) dimension alone is not enough to characterize the structure from the point of view of fluid flow and additional characterizations are introduced. The porosity, ρp, of the primary elements has a critical value, ρc. With probability 1, both the saturated and unsaturated conductivities are found to be dependent as a power law on the length scale, L, at which the measurement is made when ρpc. When ρpc, only the unsaturated conductivity is scaling in length scale, while the saturated conductivity becomes dominated, with probability close to 1, by the conductivity of the largest connecting pores in the structure, i.e. preferential pathways. The relationships between the parameters of the power laws and structure are derived and are found to depend on the fractal (Hausdorff) and spectral dimensions of the solid matrix, denoted dm and respectively. A discussion of the importance of these results for the interpretation and extrapolation of measurements is presented, and the implications for variability and predictability of the hydraulic properties of soil is discussed.  相似文献   

8.
If an exchangeable ion in soil diffuses along a liquid and solid pathway, its diffusion coefficient may be expressed as where D, v, f, C are diffusion coefficient, volume fraction, impedance factor, and concentration terms and the suffixes l,S refer to liquid and solid. The self-diffusion coefficient of the ion is then where D′, Dt, and Ds, are self-diffusion coefficients. D and D′ will vary with concentration. In diffusion out of the soil to a zero sink, the appropriate average diffusion coefficient is, approximately, the self-diffusion coefficient in the undisturbed soil. Diffusion of one ion species is influenced by other ions diffusing in the system through the diffusion potential set up. When ions are diffusing to plant roots, the diffusion potential is likely to be small. A more likely, though more complicated, expression for D than the first equation above is derived by assuming the ion to follow solid and liquid pathways in series as well as in parallel.  相似文献   

9.

Purpose

The impacts of different land use practices on soil quality were assessed by measuring soil attributes and using factor analysis in coastal tidal lands. The study provided relevant references for coastal exploitation, land management and related researches in other countries and regions.

Materials and methods

Measured soil attributes include physical indicators [bulk density (ρ b), total porosity (? t) and water-holding capacity (WHC)], chemical indicators [pH, electrical conductivity (EC), total nitrogen (TN), soil organic matter (SOM), available N, available P and available K] and biological indicators (urease activity, catalase activity and phosphatase activity), and 60 soil samples were collected within five land use types [(1) intertidal soils, (2) reclaimed tidal flat soils, (3) farmland soils, (4) suburban vegetable soils, (5) industrial area soils) in Jianggang village of Dongtai county, Jiangsu province of China.

Results and discussion

The results from the investigation indicated that selected soil properties reduced to three factors for 0–20-cm soil depth; “Soil fertility status” (factor 1), “Soil physical status” (factor 2) and “Soil salinity status” (factor 3). For the first factor, the measured soil attributes with higher loadings were TN and SOM, which represented soil fertility feature, and for the second and third factors, the measured soil attributes with higher loadings were ρ b and available K as well as EC, which reflected soil physical properties and soil salinity feature, respectively.

Conclusions

Changes in different land use types due to plants (corn, wheat and green vegetable) and application of fertilizers were characterized by promoted soil quality, including improvements in chemical properties (increasing SOM concentration, TN and nutrient available to plants; decreasing EC), improvements in soil physical properties (decreasing ρ b; increasing ? t and WHC) and enhancements in soil enzyme activities. Judging from the soil quality indices, the soil quality was affected by different land use practices and decreased in sequence of suburban vegetable soils, farmland soils, industrial area soils, reclaimed tidal flat soils and intertidal soils in the study area.  相似文献   

10.
The way pH changes in soil are propagated by movement of acids and bases is described. In acid soils the H3O+-H2O acid-base pair is most important, while in alkaline soils the H2CO3-HCO3? pair is always dominant, its effect depending directly on the pressure of CO2. In neutral and slightly acid soils, soluble organic matter and the H2PO4?-HPO24? pair may also contribute. A soil acidity diffusion coefficient is derived, and defined as: where vl= the volume fraction of the soil solution, fl= the impedance factor for the liquid diffusion pathway, bHS= the pH buffer capacity of the soil, b HB= the pH buffer capacity of each mobile acid-base pair, Dl HB= the diffusion coefficient of each mobile acid-base pair in free solution, and the sum is taken over all mobile acid-base pairs. The soil acidity diffusion coefficient may be used to predict the course of pH equilibration in practical situations. It is high in acid and alkaline soil, and at a minimum in slightly acid soil. It is little affected by variation of the ionic strength of the soil solution at concentrations less than 0.01M. When the pH buffer capacity of the soil is constant, and only the H3O+-H2O and H2CO3-HCO3? pairs are important, the soil acidity diffusion coefficient varies as cosh{2.303(pH—pH0)}, where pH0 is the pH at which the soil-acidity diffusion coefficient is a minimum.  相似文献   

11.
Batch titration experiments were carried out with organic soil samples in order to investigate the release to the solution phase of humic substances (HS). Measurements were made of pH, dissolved organic carbon (DOC) concentration, and the concentration of mono-meric (inorganic + organic) aluminium, as functions of added acid or base. DOC was taken to be entirely due to HS. The results can be interpreted in terms of a model in which the soil is considered to contain two types of HS–mobile or potentially mobile (HSM), and immobile (HSI). The binding of inorganic ions by the HS is calculated using humic ion-binding model IV, previously developed in this laboratory. Model IV allows the charges on the HS (ZHSM, ZHST) to be calculated; these are determined mainly by the binding of H+ and A13+. Concentrations of HS in solution, [HSaq], are given by the equation: where |ZHSM| is the modulus of ZHSM, nHSM is the carboxyl group content of HSM, cHSM is the soil content of HSM, β is a fitting parameter, and square brackets, [ ], indicate concentrations. For most of the soils a value for β of 3 gives acceptable agreements between measured and calculated values of [HSaq], indicating a major influence of charge on release. The optimized value of cHSM differs considerably among soils, whereas cHIS varies by only a factor of about two. Total humic contents (cHSM+ cHSI estimated by model optimization are in approximate agreement with values estimated by extraction of the soils with NaOH.  相似文献   

12.
The variability of gas diffusion in soil is not well known, but is important for assessing greenhouse gas emissions, soil decontamination, oxidation in soil and plant and root respiration. The goal of this study was to assess small‐scale variability of the relative soil‐gas diffusivity (Ds / Do, msoil air) using large intact soil monoliths and to compare Ds / Do calculation methods. Neon (Ne) was maintained constant at the lower boundary of three monoliths of two soils (a sand and an organic soil). Ne concentration was measured at large spatial and temporal frequencies. Calculation methods included the use of average concentration, and average Ds / Do per horizon, per section, or for the entire soil profile. Considering all sections of the monoliths, Ds / Do varied from 3.5 × 10−3 to 1.2 × 10−1 for the Ap horizon and from 4.8 × 10−3 to 8.3 × 10−1 for the Bf horizon in the sand and from 1.0 × 10−3 to 7.9 × 10−3 for the Ohp horizon and from 2.4 × 10−4 to 7.7 × 10−2 for the Of horizon in the organic soil. For the entire soil profile, variations in Ds / Do between monoliths reached 125% in the sand and 56% in the organic soil. The Ds / Do calculation method influenced the apparent variability (CV) of Ds / Do and, to a lesser extent, Ds / Do values of the overall soil profile. Differences in Ds / Do between monoliths could not be explained solely by the variability of total soil porosity and air‐filled porosity. Soil macroporosity (cracks and earthworm burrows) and layering greatly influenced variability of gas movement. Thus, the choice of sampling procedure, calculation method and modelling must be governed by the scale of the processes of interest and soil variability attributes.  相似文献   

13.
The flow of new and native plant-derived C in the rhizosphere of an agricultural field during one growing season was tracked, the ratios in different soil C pools were quantified, and the residence times (s) were estimated. For this the natural differences in 13C abundances of: (1) C4 soil (with a history of C4 plant, Miscanthus sinensis, cultivation), (2) C3 soil (history of C3 plant cultivation), and (3) C4/3 soil (C4 soil, planted with a C3 plant, Triticum aestivum) were used. Total amounts and 13C values of total soil C, non-hydrolysable C, light fraction C, water-soluble C, microbial biomass C, and phospholipid fatty acids (PLFA) were determined. Using the 13C values of soil C in a mixing and a 1-box model enabled the quantification of relative contributions of C3 plant and C4 plant C to the total amount of the respective C pools in the C4/3 soil and their s. Compared to early spring (March), the percentage of C3 plant C increased in all pools in June and August, showing the addition of new C to the different soil C fractions. In August the contribution of new C to microbial biomass C and water-soluble C reached 64 and 89%, respectively. The s of these pools were 115 and 147 days. The 13C values of the dominant soil PLFA, 18:17c, cy19:0, 18:19c, 16:0, and 10Me16:0, showed wide ranges (–35.1 to –13.0) suggesting that the microbial community utilized different pools as C sources during the season. The 13C values of PLFA, therefore, enabled the analysis of the metabolically active populations. The majority of 13C values of PLFA from the C4/3 soil were closely related to those of PLFA from the C3 soil when T. aestivum biomass contributions to the soil were high in June and August. Specific populations reacted differently to changes in environmental conditions and supplies of C sources, which reflect the high functional diversity of soil microorganisms.  相似文献   

14.

Purpose

Recent trends in soil green and sustainable remediation require an increased attention on environmental effects. The physical consequences of remediation practices on soil structure are very rarely investigated.

Material and methods

A laboratory experiment was carried out by adding iron grit to a sand (S), a silt loam (L), and a clay (C) soil subjected to several wetting-drying cycles. The physical effects of the treatment on soil pore system were identified and quantified combining physical measurements on repacked samples with image analysis of pores on resin-impregnated soil blocks and micromorphological analysis on thin sections.

Results and discussion

A negligible reduction of total porosity (P) resulted in S, and a slight increase was observed in the L and C soils. However, an important impact on soil structure was identified in pore size range >10 μm for the L and C soils, with the formation of new pores related to the differential shrink-swell behavior between soil matrix and added iron grains. Different plasticity of these soils also played a role in planar pore formation.

Conclusions

Effects of the addition of iron grit on soil pore system are strongly dependent on soil physical properties. The performed experiment showed that iron-based amendments can improve soil structure in low-plastic shrink-swell soil increasing porosity in the range of transmission pores (50–500 μm). This study showed the high potential of soil micromorphology and pore image analysis in order to evaluate the environmental impact of soil remediation practices.  相似文献   

15.
This study investigated the effect of biochar amendments on the retention and availability of plant nutrients and Al in seven acidic tropical soils from Zambia and Indonesia. The experiments carried out investigated whether the adsorption capacity of NH$ _4^+ $ in the soils increased upon the addition of biochar and which effect biochar had on available concentrations of NO$ _3^- $ , K+, Mn2+, Mg2+ , PO$ _4^{3‐} $ , and Al3+. These nutrients were selected as they represent those important to plant growth and soil quality. No significant increases or decreases in aqueous NH$ _4^+ $ ‐N concentration with additions of biochar were detected. The Gaines–Thomas model was used in order to calculate selectivity coefficients for NH$ _4^+ $ exchange (Kgt values). Following the addition of biochar to soil, Kgt values decreased showing a reduction in the selective binding of NH$ _4^+ $ in the biochar amended soil compared to the control. The concentration of NO$ _3^- $ increased following the addition of biochar to the soils. The addition of 5 and 10% biochar to the Indonesian soil did not significantly alter (t‐test confidence level 0.05) the sorption of PO$ _4^{3‐} $ to the soil–biochar mixtures as compared to the soil alone. However, the addition of biochar to the soil from Zambia increased the sorption of PO$ _4^{3‐} $ compared to the soil alone. The concentrations of K+ and Mg2+ were significantly increased for almost all soils (t‐test at the 0.05 confidence level) following the addition of biochar. Addition of biochar to all but two soils significantly decreased (t‐test confidence level 0.05) Mn2+ concentrations. The concentration of Al3+ in the soils decreased exponentially significantly (t‐test confidence level 0.05) following the amendment of biochar in accordance with the increase in pH observed when biochar was added to the soil. These results show that biochar has the ability to release essential plant growth nutrients as well as alleviate Al toxicity in these soils.  相似文献   

16.
Summary Pot experiments were carried out to study the influence of bulk density (D b), soil water tension (pF) and presence of plants (spring wheat) on denitrification in a low-humus Bt-horizon of a udalf. Pots of only 5-cm depth were found to be most suitable for the experiments when using the acetylene inhibition method. Almost homogeneous soil compaction between 1.1 and 1.6g soil cm–3 was achieved by a Proctor tamper. Water tensions were adjusted by means of ceramic plates on which negative pressure was applied. No denitrification was detected in unplanted pots. With planted pots and increasing bulk density denitrification increased more in pots with 14-day-old plants than in pots with 7-day-old plants. With 14-day-old plants N2O emission pot–1 increased steadily from 2 mol at D b 1.1 to 8 mol at D b 1.6, when soil moisture was adjusted to pF 1.5, although root growth was impaired by higher bulk density. From an experiment with different bulk densities and water tensions it could be deduced that the air-filled porosity ultimately determined the rate of denitrification. When low water tension was applied for a longer period, water tension had an overriding effect on total denitrification. Denitrification intensity, however, i.e. the amount of N2O g–1 root fresh weight, was highest when low water tension was accompanied by high bulk density. The results suggest that the increase in denitrification intensity at oxygen stress is partly due to higher root exudation.  相似文献   

17.
Summary Topsoils (0–75 mm) from four different soil types were collected from stock camp and non-camp (main grazing area) areas of grazed pastures in New Zealand, which had been fertilised annually with superphosphate for more than 15 years, in order to assess the effects of grazing animals on the status and distribution of soil S fractions and organic matter. These soils were analysed for organic C, total N, total S, C-bonded S, hydriodic acid-reducible S, 0.01 M CaCl2, and 0.04 M Ca(H2PO4)2-extractable S fractions, and soil pH. Soil inorganic and organic S fractions extracted by NaHCO3 and NaOH extractants were also determined. The results obtained showed that camp soils contain higher soil pH, organic C, total N, total S, organic (C-bonded S and hydriodic acid-reducible S) and inorganic S fractions, NaHCO3-and NaOH-extractable soil S fractions but a lower anion retention capacity than non-camp soils, attributed to a higher return of plant litter and animal excreta to camp soils. In both soils, total S, organic S, C-bonded S, and hydriodic acid-reducible S were significantly correlated with organic C (r0.90***, ***P0.001) and total N (r0.95***), suggesting that C, N, and S are integral components of soil organic matter. However, C: N : S ratios tended to be lower in camp (60: 5.6: 1–103: 7.2: 1) than in non-camp soils (60:6.1:1–117:8.3:1). Most (>95%) of the total soil S in camp and non-camp soils is present as organic S, while the remainder is readily soluble and adsorbed S (i.e. Ca(H2PO4)2-extractable S). C-bonded S and hydriodic acid-reducible S constituted 55%–74% and 26%–45% of total S, respectively, reflecting a regular return of plant litter and animal excreta to the grazed pastures. NaHCO3, and especially NaOH, extracted significantly higher amounts of total soil S (13%–22% and 49%–75%, respectively) than Ca(H2PO4)2 or CaCl2 (<5%). In addition, NaHCO3 and NaOH-extractable soil S fractions were significantly rorrelated with soil organic S (r0.94***), C-bonded S (r0.90***) and hydriodic acid-reducible soil S (r0.93***). Differences between soils in either camp or non-camp areas were related to their sulphate retention capacities, as soils with high sulphate retention capacities (>45%) contain higher levels of C-bonded and hydriodic acid-reducible S fractions than those of low sulphate retention soils (<10%). Long-term annual superphosphate applications significantly increased the accumulation of soil organic and inorganic S fractions, and organic C and total N in the topsoil, although this accumulation did not occur when the superphosphate application rates were increased from 188 to 376 kg ha-1 year-1.  相似文献   

18.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

19.
Depending on the top and subsoil textures, semi-arid soils exhibit cohesive and frictional properties that are associated with the relatively high soil strength, bulk density and penetration resistance. The objective of this study was to gain the knowledge of mechanical properties of the compacting chromic luvisols in order to improve the design of tillage tools. Therefore, we applied critical state soil mechanics to study the stress–strain behaviour of the luvisols using triaxial tests under laboratory conditions. Field investigations involved random collection of undisturbed soil samples which were subjected to triaxial testing first by isotropic consolidation and compression and then triaxial shearing. Plots of deviatoric stress against axial strain were made to determine the soil shear strengths at the critical states over different soil water levels and the two soil depths of 0–20 cm for the plough and 20–40 cm for the hard pan layers, respectively. An exponential model used to fit the deviatoric stress–axial strain test data accurately predicted the trends. Soil water significantly influenced the shear strength, cohesion (c′) and internal angle of friction (′) and hence the mechanical behaviour of the luvisols. The regression equations developed showed that c′ and ′ have quadratic relationships with soil water. The very high clay bonding strength in the subsoil (hard pan) layer resulted in high shear strength, bulk density and penetration resistance values for this soil layer. The increase in shear strength with decreasing water content affected the deviatoric stress–axial strain relationships between the upper and lower plastic limits of the sandy soil. Thus, as the soil dried, the soil ceased to behave in the plastic (ductile flow) manner and thus began to break apart and crumble. The crumbling was indicative of brittle failure. The transition stage from an increase to a decrease in c′ and ′ values with soil water occurred in the soil water content range of 6–10%. Knowledge of stress–strain behaviour of compacting soils is of practical significance in the design of appropriate tillage tools for the specific soil type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号