首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylem-sap and stem and leaf extracts from 35 species, comprising 14 genera, of leguminous trees were analyzed for ureides, nitrate and -amino acids. Trees were either inoculated with Rhizobium or fertilized with NH4NO3. The dominant form of soluble N in stem and leaf extracts and xylem sap was 2-amino acids. Certain non-N2-fixing species, i.e. Tamarindus indica and Adenantherapavonina, produced significant amounts of ureides. Several N2-fixing species. Mimosa scabrella, Sesbania grandiflora. Acacia mearnsii and Gliricida sepium, grown on mineral-N had higher absolute amounts of ureides in both extracts and exudates than did most nodulated species. Nodulated A. meamsii and S. grandiflora, had the highest amounts of ureides in xylem sap. The relative abundance of ureides in stem and leaf extracts was lower than in xylem sap, but was correlated. Results indicated that the presence of ureides, per se, was not a reliable indicator of N2-fixing activity. Moreover, the relative abundance of ureides in most of the species tested was too low to use as a presumptive test for, or as a means of, estimating N2 fixation.  相似文献   

2.
Riparian buffers, located in the transition zone between terrestrial and aquatic ecosystems, are a hotspot for nitrogen (N) removal through denitrification. Earthworms are abundant in riparian buffers and may enhance denitrification. This study investigated earthworm demographics of three earthworm functional groups (anecic, epigeic, and endogeic) and denitrifier activity in temporarily flooded and non-flooded riparian soils from April to October 2012 in southern Quebec, Canada. Nine earthworm species, mostly endogeic, were found in the temporarily flooded soil, while only six earthworm species were found in the non-flooded soil. On average, there were 11.7 times more earthworms with 12.4 times greater biomass (P<0.05) found in the temporarily flooded soil than in the non-flooded soil. The denitrification enzyme activity (DEA) was of similar magnitude in temporarily flooded and non-flooded soils, with temporal variation associated with rainfall patterns. Endogeic earthworm biomass was positively correlated (P<0.05) with DEA, while epigeic earthworm biomass was positively correlated (P<0.05) with 16S rRNA gene copies and nosZ gene copies from bacteria, indicating an association between earthworm functional groups and denitrifier activity in riparian soils. Stepwise multiple regressions showed that DEA in riparian soils could be predicted using soil moisture, inorganic N concentration, and earthworm functional groups, suggesting that endogeic and epigeic earthworms contributed to denitrifier activity in riparian soils.  相似文献   

3.
Rhizodeposit-carbon (rhizo-C) serves as a primary energy and C source for microorganisms in the rhizosphere. Despite important progress in understanding the fate of rhizo-C in upland soils, little is known about microbial community dynamics associated with rhizo-C in flooded soils, especially depending on water regimes in rice systems. In this study, rice grown under non-flooded, continuously flooded and alternating water regimes was pulse labeled with 13CO2 and the incorporation of rhizo-C into specific microbial groups was determined by 13C in phospholipid fatty acids (PLFAs) at day 2 and 14 after the labeling.A decreased C released from roots under continuously flooded condition was accompanied with lower total 13C incorporation into microorganisms compared to the non-flooded and alternating water regimes treatments. Continuous flooding caused a relative increase of 13C incorporation in Gram positive bacteria (i14:0, i15:0, a15:0, i16:0, i17:0, a17:0). In contrast, Gram negative bacteria (16:1ω7c, 18:1ω7c, cy17:0, cy 19:0) and fungi (18:2ω6, 9c, 18:1ω9c) showed greater rhizo-C incorporation coupled with a higher turnover under non-flooded and alternating water regimes treatments. These observations suggest that microbial groups processing rhizo-C differed among rice systems with varying water regimes. In contrast to non-flooded and alternating water regimes, there was little to no temporal 13C change in most microbial groups under continuous flooding condition between day 2 and 14 after the labeling, which may demonstrate slower microbial processing turnover. In summary, our findings indicate that belowground C input by rhizodeposition and its biological cycling was significantly influenced by water regimes in rice systems.  相似文献   

4.
Summary The persistence of parathion, methyl parathion and fenitrothion in five tropical soils of varying physicochemical characteristics was compared under flooded and non-flooded conditions. The degradation of all the three insecticides was more rapid under flooded conditions than under non-flooded conditions in four out of five soils. Degradation of these insecticides proceeded by hydrolysis under non-flooded conditions and essentially by nitro group reduction and to a minor extent by hydrolysis under flooded conditions. Kinetic analysis indicated that degradation of the three insecticides followed a first-order reaction irrespective of the soil and water regime. The degradation of these organophosphorus insecticides was accelerated after repeated applications to flooded alluvial soil. Nitro group reduction was the major pathway of degradation for all the three insecticides after the first addition while the rate of hydrolysis increased after each successive addition.  相似文献   

5.
To investigate the mechanisms by which rice plants growing in alternately flooded and drained soils absorb soil phosphate, we grew rice in moist, flooded and flooded then moist soils, and compared the measured uptake of phosphorus (P) with that calculated using a mathematical model of uptake allowing for solubilization by various means. The theory and equations for the model are given, together with a method for solving diffusion equations near roots in a root system of increasing density. The diffusion coefficients and buffer powers of P in the soil under the different water regimes are measured by following diffusion of P to a resin sink, and the parameters describing solubilization are estimated from previously published results. In all the water regimes studied, the plants relied upon solubilization for most of their P. The roots were not mycorrhizal, as they will often not be in intermittently flooded soils. In the flooded soil, uptake was three times that in the moist soil, and was consistent with solubilization by acidification caused by roots as a result of oxidation of iron and imbalance between the intake of cations and anions. In the moist soil, the uptake was consistent with solubilization by excretion of organic anions from the roots. In the flooded then moist soil, uptake declined sharply as the soil dried because P became immobilized in the soil. However, the final uptake was similar to that in the continuously moist soil, indicating that some of the immobilized P was re‐solubilized by roots, possibly by excretion of organic anions.  相似文献   

6.
Irrigated rice fields account for 10–30% of global methane emissions. Rice plants ventilate the soil and enlarge the oxic–anoxic interface by their root system, thus supplying the necessary O2 to aerobic CH4 oxidizing bacteria (MOB). Rice plants (Oryza sativa type japonica var. Roma) were grown in microcosms in a greenhouse. The roots were sandwiched between two blocks of flooded rice field soil separated by a nylon gauze bag. A root mat developed which mimicked the dense root texture in the upper layer of a natural rice field. Flux measurements under oxic and anoxic conditions showed that CH4 was oxidized with a constant rate of 19% of the anoxically emitted CH4, suggesting that CH4 oxidation in the rhizosphere was at least sometimes limited by CH4 availability. Washed rice roots could both produce and oxidize CH4, depending upon incubation conditions. CH4 production by washed rice roots accounted for at most 10% of the CH4 emitted under anoxic conditions. Initial CH4 oxidation rates of washed roots equaled oxidation rates calculated from the difference between oxic and anoxic fluxes in situ. Oxidation rates became twice as high after an induction period of 20 h, indicating a limitation by O2 or CH4 in situ. The micro-environmental conditions near to the root mat were measured using microelectrodes for O2, redox potential and NH4+ and diffusion probes for CH4. Up to 42 μM O2 was detected in the root mat and concentrations were >2.5 μM in 45% of all measurements. In the bulk soil, no O2 was detected below 2 mm depth, but the root mat significantly increased the redox potential. Plant roots and associated bacteria decreased porewater CH4 and NH4+ concentrations. In the root mat, concentrations of dissolved CH4 were below the detection limit of our probes (<5 μM). Cell numbers of MOB increased with time in the rhizosphere and in the rhizoplane. MOB and aerobic heterotrophic bacteria (AHB) each numbered from 106 to 108 cells g−1 dry weight of soil or root biomass). Active MOB occurred near to a root mat similar to the dense root texture in the upper layer of rice fields. We speculate about O2 or CH4 limitation of MOB.  相似文献   

7.
To understand the impact of rising levels of atmospheric CO2 on ecosystems, we need to understand plant responses to elevated CO2, as well as how those plant responses in turn affect their environment. An important component of the environment of a plant is the soil biota living near plant roots. Soil nematodes are representative of a large portion of this biota, since they are abundant and trophically diverse in most soils. In a three-year field experiment, we studied the responses of soil nematodes to increased root growth of trees growing in high and low nitrogen soils under ambient and twice-ambient atmospheric CO2, a two-by-two factorial experimental design. Our hypothesis was that in the high-N soil, increased root growth resulting from twice-ambient atmospheric CO2 would positively affect nematode density, supporting a more abundant and trophically complex nematode community. Trembling aspen (Populus tremuloides) were grown in twenty open-top chambers under the four treatments, replicated five times. In low-N soil, twice-ambient CO2 was associated with higher density of the most abundant plant-feeding taxon (Trichodoridae), lower density of one bacteriafeeding taxon (Rhabditidae), and lower evenness of the community, compared to ambient CO2. In high-N soil, twice-ambient CO2 was associated with higher density of predator/omnivores, lower diversity, and a larger value of Bonger's Maturity Index, compared to ambient CO2. In soils under young deciduous trees, such as the aspens in this experiment, increased root growth under elevated CO2 may result in significant changes in soil food web community structure that may provide clues about the fate of carbon under elevated CO2.  相似文献   

8.
Hydroponically grown barley plants ( Hordeum vulgare L. cv. Minorimugi) under iron-deficient (–Fe) and high phosphorus (P) conditions (500 µmol L−1) showed Fe chlorosis and lower growth compared with plants grown in –Fe and low P conditions (50, 5 and 0.5 µmol L−1). To understand the physiological role of P in regulating the growth of plants in –Fe medium, we carried out an Fe feeding experiment using four P levels (500, 50, 5 and 0.5 µmol L−1) and phytosiderophores (PS), mugineic acid. Our results suggest that plants grown in a high P medium had higher absorption activity of 59Fe compared with plants grown in low P media, irrespective of the presence or absence of added PS. Translocation of 59Fe from roots to shoots was not affected by the P level. The relative translocation rate of 59Fe increased with decreasing levels of P in the medium. In general, the addition of PS enhanced the absorption of 59Fe and its translocation. Taken together these results suggest that the lower relative translocation rate of Fe in high P plants may be induced by the physiological inactivation of Fe in the roots, and the higher absorption activity of Fe in high P conditions possibly results from the response of barley plants to Fe deficiency.  相似文献   

9.
深淹对狗牙根根际土壤酶活性及肥力的影响   总被引:2,自引:1,他引:1  
以三峡库区消落带生境和非消落带生境生长的狗牙根(XC、FC)为试验材料, 研究了不同生境狗牙根经不同深度水淹胁迫后, 植株根际土壤酶活性和土壤肥力状况。结果表明: 未淹对照植株根际土壤的蔗糖酶活性明显大于不同深度淹水处理, 说明淹水处理不能给植物提供与未淹对照同样多的营养源; FC 根际土壤的脲酶和酸性磷酸酶活性都较XC 的高; 淹水处理后, FC 根际土壤的全氮含量明显低于XC; 淹水前FC 根际土壤的全磷含量明显高于XC, 表明在未进行淹水处理之前的生长时期, XC 可能较FC 利用更多的土壤营养进行生长, 储备更多的能量, 从而为淹水期间植株提供能量供应, 为增强其耐淹能力奠定较好的能量基础。以上结果说明不同生境狗牙根在不同水淹胁迫下, 植株根际土壤酶活性和土壤肥力的变化与其耐淹能力有关。  相似文献   

10.
  【目的】   苹果种植后土壤很少翻动,根系常受土壤紧实胁迫。研究在土壤中掺混稻壳炭提高苹果根系硫同化代谢以及根系构型的效果,为果园土壤管理提供技术参考。   【方法】   以砧木分别为平邑甜茶和八棱海棠的两年生‘红富士’苹果 (Malusdomestica ‘Red Fuji’) 幼树为试材进行盆栽试验。对掺入和没掺入稻壳炭的土壤分别进行镇压 (土壤紧实度值分别为1558和1572 KPa) 和不镇压 (土壤紧实度值分别为923和939 KPa),共4个处理。苹果幼树移栽成活后60天,测定土壤孔隙度、氧气浓度和水溶性硫含量,分析苹果根系硫酸根和硫化氢 (H2S) 含量及ATP硫酸化酶 (ATPS)、O-乙酰丝氨酸裂解酶 (OASTL) 和L-半胱氨酸脱巯基酶(L-CD)、D-半胱氨酸脱巯基酶 (D-CD) 活性,以及根系活力和形态构型等。   【结果】   镇压处理显著降低了土壤中水溶性硫含量,降低了八棱海棠和平邑甜茶为砧木的苹果幼树根系硫酸根含量,降低了根系ATPS、OASTL和L-CD、D-CD活性以及内源H2S含量,并显著降低根系活力、根长密度、根系长度、根系体积和根系分形维数,在平邑甜茶为砧木的幼树根系中的降低幅度大于八棱海棠砧木。无论是否镇压土壤,掺入稻壳炭均提高了土壤孔隙度、土壤氧气浓度以及不同形态硫含量,提高了苹果根系硫酸根和内源H2S含量,根系ATPS、OASTL和L-CD、D-CD活性,根系活力,根系长度,根长密度和根系分形维数,且在紧实土壤中八棱海棠砧木的提升幅度大于在平邑甜茶砧木中,两种砧木的苹果幼树在紧实土壤中的提升幅度均大于在正常土壤中。   【结论】   土壤紧实显著降低土壤水溶性硫含量,抑制苹果根系硫代谢和根系生长,在土壤中掺入稻壳炭可以显著提高紧实土壤中苹果根系硫代谢、根系生长和根系分枝。因此,在苹果移栽时,在土壤中掺入一定比例的稻壳炭可以有效缓解土壤紧实对苹果根系生长和硫代谢的不利影响。  相似文献   

11.
Medicago littoralis (medic) plants were grown with varying proportions of Lolium multiflorum (ryegrass), in field microplots, containing 15N labelled soils. Nitrate was applied to the microplots at either of two depths (5 or 20 cm) and at two times (germination and flowering of the medic).

Plants were regularly clipped and the harvested plant materials analyzed to estimate N2 fixation by the 15N dilution technique. The labelling method used ensured that the added 15N was incorporated into the soil organic fraction, producing a stabilized enrichment of the mineral N released, thus eliminating errors due to uptake missmatches between legume and grass.

Nitrate, applied at germination, at 5 or 20 cm, significantly reduced the proportion of N fixed by medic grown with ryegrass by similar amounts. The proportions of N fixed by medic plants generally decreased with increasing proportions of medic, and when nitrate was added at flowering. However, when the nitrate was applied at 20 cm, this effect was not evident—probably due to strong competition from ryegrass roots removing most of the nitrate applied at that depth. Surface-applied nitrate always decreased amounts of N fixed, and also decreased amounts of N fixed g plant material (from 29 for the nil nitrate to 13 and 20 mg g−1 for nitrate at germination and at flowering, respectively). Increasing proportions of ryegrass in the mixtures also decreased amounts of N fixed. Despite defoliation and water stress, there was no evidence of transfer of fixed N from medic to ryegrass in any treatment.  相似文献   


12.
Rhodanese activity (RA) was studied in 4 soils, incubated under flooded and nonflooded (60% water-holding capacity) conditions. RA in 3 soils including an acid sulphate soil pokkali increased 2.5–6.0-fold (over respective nonflooded soils), while activity of the enzyme decreased markedly in flooded alluvial soil. Similarly, anaerobic incubation of nonflooded soils under N2 decreased RA in an alluvial soil, but increased it in pokkali soil. RA was negligible in soils, that had been reduced by flooding for 30 days and then sterilized by autoclaving. Rice rhizosphere soil exhibited significantly higher RA than the nonrhizosphere soil samples under flooded or nonflooded conditions. RA in aerobic soils was related to the microbial oxidation of S° to SO2?4. But, no relationship could be established between RA and S-oxidation in flooded soils and in rhizosphere soil suspensions of flooded rice plants.  相似文献   

13.
Response of methanogenesis and methanotrophy to elevated carbon dioxide (CO2) could be affected by changes in soil moisture content and temperature. In soil microcosms contained in glass bottles and incubated under laboratory conditions, we assessed the impact of elevated CO2 and temperature interactions on methanogenesis and methanotrophy in alluvial and laterite paddy soils of tropical origin. Soil samples were incubated at ambient (370 μmol mol−1) and elevated (600 μmol mol−1) CO2 concentrations at 25, 35 and 45 °C under non-flooded and flooded conditions for 60 d. Under flooded condition, elevated CO2 significantly increased methane (CH4) production while under non-flooded condition, only marginal increase in CH4 production was observed in both the soils studied and the increase was significantly enhanced by further rise in temperature. Increased methanogenesis as a result of elevated CO2 and temperature interaction was mostly attributed to decreased soil redox potential, increased readily mineralizable carbon, and also noticeable stimulation of methanogenic bacterial population. In contrast to CH4 production, CH4 oxidation was consistently low under elevated CO2 concentration and the decrease was significant with rise in temperature. The low affinity and high affinity CH4 oxidation were faster under non-flooded condition as compared to flooded condition. Admittedly, decreased low and high affinity CH4 oxidation as a result of elevated CO2 and temperature interaction was related to unfavorable lower redox status of soil and the inhibition of CH4-oxidizing bacterial population.  相似文献   

14.
水分类型对土壤排放的温室气体组成和综合温室效应的影响   总被引:34,自引:2,他引:34  
蔡祖聪 《土壤学报》1999,36(4):484-491
实验室研究表明,土壤排放出的温室气体(CO2、CH4和N2O)组成及总理显著地受土壤水分类型和施用秸秆的影响。连续淹水条件下,土壤仅排放微理的N2O,但排放出大量的C睡C敢条件下,土壤不排放C上键合的但排放出大量的N2O;虽然淹水的土壤排水促进N2O排放,但显著抑制CH4的排放,淹水好气交替处理的土壤其排放的CO2、CH4和N2O均在好气和连续淹水之间。根据各种温室产生温室效应的相对潜力,计算土壤  相似文献   

15.
Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (^15N-(NH4)2SO4 and ^15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m^-2 h^-1 and 2.2 mg C m^-2 h^-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.  相似文献   

16.
The level of oxygen in soils affects the bio-availability of nutrients as well as the ability of root systems to uptake and transport water and mineral nutrients. However, efforts addressing management practices to reduce yield losses after transient flooding have had limited success. Since after-drainage nitrogen (N) fertilization has been proposed to mitigate crop damage, a closer examination of plant nutrient acquisition during this period is required. In this work, we compare the short-term changes in the tissue levels of macronutrients [N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] in two varieties of tropical maize differing in tolerance to poor soil drainage, after a six day period under water saturated conditions, early during the vegetative growth. Two Venezuelan varieties, one labeled as tolerant and the other as susceptible to limited soil drainage, were planted in 10-kg pots and flooded at the seventh-leaf-tip (V4) stage. Treatments included a post-drainage N fertilization. Plant responses were compared to corresponding non-flooded plants. Flooding the soil reduced concentrations of macronutrients in shoots, compared to well aerated plants. Calcium and Mg levels were also reduced in roots, whereas K concentrations increased. After a post-drainage recovery period, nutrient concentration in shoots of flooded plants were above those of non-flooded ones, due to higher uptake rates. The only exception was P, where reduced acquisition appears to limit plant recovery. A post-flood N-urea fertilization increased the concentrations of N, Ca and Mg in shoots, but failed to increase shoot growth after 15 days. Differences in the pattern of Ca accumulation suggested a possible role of Ca nutrition in the tolerance of maize to flooding.  相似文献   

17.
Altered flux of labile C from plant roots into soil is thought to influence growth and maintenance of microbial communities under elevated atmospheric CO2 concentrations. We studied the abundance and function of the soil microbial community at two levels of spatial resolution to assess the response of microorganisms in the rhizosphere of the whole root system and of apical root zones of Phaseolus vulgaris L. to elevated CO2 and high or low N supply.

At the coarser resolution, microbial biomass C, basal respiration and phospholipid fatty acid (PLFA) patterns in the rhizosphere remained unaffected by elevated CO2, because the C flux from the whole root system into soil did not change [as shown by Haase, S., Neumann, G., Kania, A., Kuzyakov, Y., Römheld, V., Kandeler, E., 2007. Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biology & Biochemistry 39, 2208–2221]. At a higher spatial resolution, more low-molecular-weight compounds were released from apical root zones under elevated CO2. Thus, at an early stage of plant growth (12 days after sowing), elevated CO2 induced an increase of enzyme activities (xylosidase, cellobiosidase and leucine-aminopeptidase) in the rhizosphere soil of apical root zones. At later stages of plant growth (21 days after sowing), however, enzyme activities (those above as well as N-acetyl-β-glucosaminidase and phosphatase) decreased under elevated CO2. The abundance of total and denitrifying bacteria in the rhizosphere soil of apical root zones was unaffected by CO2 elevation or N supply. Plant age seemed to be the main factor influencing the density of the bacterial community. In conclusion, the soil microbial community in the apical root zone responded to elevated CO2 by altered enzyme regulation (production and/or activity) and not by greater bacterial abundance.  相似文献   


18.
To determine the relationship between nitrous oxide (N2O) and nitric oxide (NO) emission rates and soil properties in forest soils, N2O and NO emission rates in soils were measured in incubation experiments under standardized temperature and water conditions (water content at a water-holding capacity of 60%) using soils packed into a cylindrical core, and variations in the soil properties were also determined. The N2O emission rates from nitrification and from denitrification were determined separately using a nitrification inhibitor (10 Pa acetylene). Soil samples were taken from 25 forest stands in a central temperate area of Japan. The N2O and NO emission rates were highly variable, even under the standardized temperature and water-holding capacity (60%) conditions. According to a partial least squared regression model analysis, the C:N ratio and pH strongly affected the N2O emission rate, whereas     , water-soluble Al and the C:N ratio strongly affected the NO emission rate. The C:N ratio negatively affected the emission rate of both N oxide gases, suggesting that N mineralization is an important factor in the rates of N oxide gas emission. The acetylene inhibition experiment showed that N2O emission from denitrification was positively affected by pH, water-filled pore space and filling density, and negatively affected by the C:N ratio, total carbon and total nitrogen.  相似文献   

19.
Summary A commercial wettable-powder formulation (50% a. i.) of hexachlorocyclohexane (HCH) was applied to unplanted and planted (to rice) soils under flooded and non-flooded conditions at 1 kg a. i. ha–1 at 15-day intervals. A mineral salts medium supplemented with -HCH as a sole source of C was inoculated with suspensions from HCH-treated and untreated soils (unplanted or planted to rice) and incubated under aerobic conditions. -HCH disappeared completely within 10 days from the aerobically incubated medium inoculated with the suspension from the treated soil compared to less than 30% loss from the uninoculated medium or from the medium inoculated with the suspension from the untreated soil, during the corresponding period. Soil samples from HCH-treated flooded pots lost their capacity for accelerated degradation of -HCH after autoclaving. The addition of HCH clearly stimulated aerobic degradation of -HCH, even in predominantly anaerobic flooded soil. The factor responsible for the accelerated degradation of -HCH in pretreated soil was not detected in the deeper layers (>10 cm) of flooded soil and in fields that had dried following the rice harvest.  相似文献   

20.
Summary A nitrogen balance study conducted in ceramic pots under net house conditions for four seasons showed that flooded rice soil leaves a positive nitrogen balance (N increase) in soil after rice cropping in both fertilized and unfertilized soil. Recovery of nitrogen from rice soil was more than its input in unfertilized soil, but it was reverse in fertilized soil. Incorporation of Azolla or BGA twice as basal and 20 days after transplanting (DAT) alone or in combination showed higher nitrogen balance and N2-fixation (N gain) in soil than in that where it was applied once either as basal or 20 DAT. Planted soil showed more N2-fixation than that of fallow rice, and flooded soil fixed more nitrogen in comparison to non-flooded soil in light but less in dark. Soil exposed to light fixed more nitrogen than that of unexposed soil in both flooded and non-flooded conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号