首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The retention of applied 35S was studied in a lysimeter experiment, in which the lysimeters, consisting of soil columns with intact field and groundlayer vegetation, had previously been treated with either sulphuric acid, NPK or a combination of sulphuric acid and NPK.35S was applied as Na235SO4 to all lysimeters in an amount corresponding to 2 kg S ha?1, 3 months before the termination of the experiment. Of the applied 35S, 4.7 ± 1.6% (the error term showing the standard error of the mean) was leached from the lysimeters; 35SO42?, was preferentially sorbed in the upper part of the B horizon, >61% being sorbed in the B horizon as a whole. The influence of previous treatments was seen in SO42? content in the B horizon and also in the SO42? concentrations in the leachates from the lysimeters. Sorption of 35SO42? was enhanced by the acid treatment in the A0 and A1/A2 horizons. Ratios between water-extractable SO42? and KCl-extractable SO42? varied from 0.88 in the A1/A2 horizon to 0.46 in the lower part of the B horizon, indicating a preferential sorption of less available SO42? fractions in that part of the soil.Significant positive correlations between soil organic carbon and various sulphur fractions, both labelled and unlabelled, indicated the importance of biological S transformations in the A0 and A1/A2 horizons.Positive correlations between KCl-extractable Al and KCl-extractable SO42? were found in the B horizon. Equilibrium calculations suggested that the SO42? activity and Al3+ activity in leachates from control and acidified lysimeters were within the stability fields of basaluminite (Al4(OH)10SO4), activities in leachates from the latter group of lysimeters, also being close to jurbanite (Al(OH)SO4).  相似文献   

2.
The vegetation of four different forest soils in lysimeters was killed with glyphosate. New vegetation became established in some of the treated lysimeters the year after application. During this year, leachates from lysimeters without vegetation had nitrate concentrations up to 4.5 mM NO3 ? in the fall. A corresponding increase in leached cations was evident. The settlement of one raspberry or one willow herb in treated lysimeters effectively hindered nitrate leaching as soon as the plants were sufficiently large (in mid‐summer). As plants became established in treated lysimeters, the chemistry of these leachates approached those of untreated lysimeters. The absolute effect of even small plants in controlling water regime and water chemistry was evident.  相似文献   

3.
To examine the effects of elevated N and S inputs on a central hardwood forest, a whole-watershed acidification experiment was initiated in 1989 on the Fernow Experimental Forest, West Virginia. Annual experimental additions of 40 kg S ha−1 year−1 and 35 kg N ha−1 year−1 as ammonium sulfate fertilizer were applied to a 34 ha watershed with a 25-year-old stand of central Appalachian hardwoods. An adjacent watershed served as the control. After 5 years of treatment (total additions of 275 kg S ha−1 and 220 kg N ha−1), stream water NO3, Ca2+, Mg2+ concentrations and export increased. Soil solution concentrations provide evidence that the treatment watershed is nitrogen-saturated, which was unexpected for such a young stand. No statistically significant changes in annual SO42− export were observed, but peak stream water concentrations of SO42− did increase during the treatment period. Changes in soil solution chemistry suggest that the treated watershed also may be approaching SO42− saturation.  相似文献   

4.
Reinvestigation of 90 soil profiles sampled for pH measurements in 1927 revealed a general decrease in pH with 0.3–0.9 units (measured electrometrically on field‐moist samples in water with the same ratio soil/water on both occasions). All soil horizons (A0, A2, B and the subsoil, C, at 70 cm depth) had become more acid beneath all types of canopy (beech, oak, spruce planted during different periods), but the spruce stands were on average more acid than the hardwoods. In the upper soil horizons (A0 and A2), old spruce stands were more acid than the young ones at both samplings, but this effect was small in the B horizon and absent in the C horizon. While the tree species effect and age effect in the spruce stands may be called biological acidification, the acidification of deeper horizons, now often below pH 4.5 and in the aluminium buffer range, seems difficult to explain without assuming an influence of acid deposition.  相似文献   

5.
Because soil CO2 efflux or soil respiration (RS) is the major component of forest carbon fluxes, the effects of forest management on RS and microbial biomass carbon (C), microbial respiration (RH), microbial activity and fine root biomass were studied over two years in a loblolly pine (Pinus taeda L.) plantation located near Aiken, SC. Stands were six-years-old at the beginning of the study and were subjected to irrigation (no irrigation versus irrigation) and fertilization (no fertilization versus fertilization) treatments since planting. Soil respiration ranged from 2 to 6 μmol m−2 s−1 and was strongly and linearly related to soil temperature. Soil moisture and C inputs to the soil (coarse woody debris and litter mass) which may influence RH were significantly but only weakly related to RS. No interaction effects between irrigation and fertilization were observed for RS and microbial variables. Irrigation increased RS, fine root mass and microbial biomass C. In contrast, fertilization increased RH, microbial biomass C and microbial activity but reduced fine root biomass and had no influence on RS. Predicted annual soil C efflux ranged from 8.8 to 10.7 Mg C ha−1 year−1 and was lower than net primary productivity (NPP) in all stands except the non-fertilized treatment. The influence of forest management on RS was small or insignificant relative to biomass accumulation suggesting that NPP controls the transition between a carbon source and sink in rapidly growing pine systems.  相似文献   

6.
Albaugh TJ  Allen HL  Fox TR 《Tree physiology》2008,28(7):1083-1098
We quantified nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) content, use (nutrient amount for one growth year), retranslocation (nutrients recycled before foliage senescence), uptake (use minus retranslocation), volume production per unit of uptake and fertilizer-uptake efficiency (percent applied taken up) in a 2 x 2 (nutrient and water) factorial experiment replicated four times in an 8-year-old loblolly pine (Pinus taeda L.) stand growing on a nutrient-poor sandy soil in Scotland County, North Carolina, USA. Over 14 years, we applied 1140, 168, 393, 168 and 146 kg ha(-1) of elemental N, P, K, Ca and Mg fertilizer, respectively, and an average of 710 mm year(-1) of irrigation. All plots received complete vegetation control. Fertilization about doubled tissue N, P, K and Mg contents at age 21, whereas irrigation resulted in smaller increases in nutrient contents. Maximum annual uptake was 101, 9.3, 44, 37 and 13 kg ha(-1) year(-1) and volume production per unit of nutrient uptake was 0.35, 3.5, 0.66, 1.1 and 3.1 m(3) kg(-1), for N, P, K, Ca and Mg, respectively. Irrigated plots had greater volume production per unit of N, P, K and Mg uptake than control plots, likely because irrigation allowed photosynthesis to continue during dry periods. Fertilized plus irrigated plots had less volume production per unit of these elements than the fertilized plots either because nutrient uptake exceeded the requirement for optimum growth or because available water (rainfall plus irrigation) was insufficient for the leaf area achieved with fertilization. At age 19, fertilizer-uptake efficiencies for N, P, K, Ca and Mg were 53, 24, 62, 57 and 39%, respectively, and increased with irrigation to 68, 36, 78, 116 and 55%, respectively. The scale of fertilizer uptake was likely a result of low native site nutrient availability, study longevity, measurement of all tissue components on site, a comprehensive assessment of coarse roots, and the 3-m rooting depth. Ecosystem nitrogen retention (applied nitrogen found in living plant material, litter fall and soil to 150-cm depth) was estimated at 79% at age 17, a value that would likely be greater when including soil nitrogen to rooting depth and calculating retention at age 21 when the study ended. The ecosystem retention value provides evidence that intensive site resource management can be accomplished with low likelihood of applied materials moving offsite.  相似文献   

7.
In this research, the evapotranspiration (ET) of three native vegetation communities were measured using drainage lysimeters in the Taihang Mountain area, China. They are a local grass, Themeda japonica, a local shrub, Vitex negundo var. heterophylla Rehd. and a mixture of both communities. The ET was measured using level lysimeters (with a slope of 0°) and slope lysimeters (with a slope of 25°). In general, the measured ET was higher in the level lysimeters than in the slope lysimeters because of the water loss of surface runoff from the slope lysimeter. The total ETs over the growing season for the grass, shrub, and the mixture were 730.4, 742.0 and 790.7 mm, respectively in the level lysimeters, and 535.5, 504.1 and 540.1 mm, respectively in the slope lysimeters. In addition, the monthly ET peaked in August and had close linear relationship with leaf area index. The drainage lysimeter is an effective tool to estimate plant ET in mountain areas. The results from this research would provide scientific information for the vegetation recovery and sustainable development of forestry in the TM areas.  相似文献   

8.
[目的]分离并量化土壤自养呼吸和异养呼吸,探讨各自贡献率及其随季节变化的动态特征。[方法]采用壕沟法和气体红外分析法,研究黄河小浪底库区山地栓皮栎人工林土壤总呼吸、自养呼吸和异养呼吸速率的季节动态变化、贡献率和环境影响因子。[结果]表明:栓皮栎人工林总土壤呼吸、自养呼吸和异养呼吸均呈夏季速率高、冬季速率低。栓皮栎土壤总呼吸、自养呼吸及异养呼吸速率与5 cm土壤温度均呈极显著指数相关,温度敏感性系数Q_(10)值大小为自养呼吸(3.40)异养呼吸(2.90)土壤总呼吸(2.45);栓皮栎土壤总呼吸、自养呼吸、异养呼吸速率与0 10 cm土壤体积含水量均显著线性相关;土壤总呼吸、自养呼吸速率与0 10 cm土壤电导率显著相关。土壤总呼吸和异养呼吸的温度敏感系数Q_(10)值均在冬季最大,夏秋季最小;而自养呼吸的Q_(10)值则呈相反的变化趋势。栓皮栎人工林自养呼吸和异养呼吸对土壤总呼吸的月贡献率为13.23%37.33%和62.67%86.76%,且自养呼吸的贡献率与土壤温度的季节变化规律相似。土壤总呼吸、异养呼吸与自养呼吸的CO2年通量分别为1 616.41、1 199.39、417.02 g·m~(-2)·a~(-1)。[结论]经过区分与定量化土壤总呼吸及其组分,确定异养呼吸为本研究区栓皮栎人工林土壤总呼吸的主要组分,作用于异养呼吸的生物与非生物因子均能显著影响整个森林生态系统表层CO_2总排放通量的大小,进一步为该研究区森林生态系统碳循环与能量流动的进一步量化研究提供参考。  相似文献   

9.
Soil respiration (RS) is a major carbon pathway from terrestrial ecosystems to the atmosphere and is sensitive to environmental changes. Although commonly used mechanical thinning and prescribed burning can significantly alter the soil environment, the effect of these practices on RS and on the interactions between RS and belowground characteristics in managed forests is not sufficiently understood. We: (1) examined the effects of burning and thinning treatments on soil conditions, (2) identified any changes in the effects of soil chemical and physical properties on RS under burning and thinning treatments, and (3) indirectly estimated the changes in the autotrophic soil respiration (RA) and heterotrophic soil respiration (RH) contribution to RS under burning and thinning treatments. We conducted our study in the Teakettle Experimental Forest where a full factorial design was implemented with three levels of thinning, none (N), understory thinning (U), and overstory thinning (O; September to October 2000 for thin burn combination and June and July 2001 for thin only treatments) and two levels of burning, none (U) and prescribed burning (B; fall of 2001). RS, soil temperature, soil moisture, litter depth, soil total nitrogen and carbon content, soil pH, root biomass, and root nitrogen (N) concentration were measured between June 15 and July 15, 2002 at each plot. During this period, soil respiration was measured three times at each point and averaged by point. When we assumed the uniform and even contribution of RA and RH to RS in the studied ecosystem without disturbances and a linear relationship of root N content and RA, we calculated the contributions of RA to RS as 22, 45, 53, 48, and 45% in UU, UO, BN, BU, and BO, respectively. The results suggested that after thinning, RS was controlled more by RH while after burning RS was more influenced by RA. The least amount of RS variation was explained by studied factors under the most severe treatment (BO treatment). Overall, root biomass, root N concentration, and root N content were significantly (p < 0.01) correlated with soil respiration with correlation coefficients of 0.37, −0.28, and 0.29, respectively. This study contributes to our understanding of how common forestry management practices might affect soil carbon sequestration, as soil respiration is a major component of ecosystem respiration.  相似文献   

10.
为探究配方施肥对云南松松针养分含量和土壤理化性质的影响,为云南松幼林抚育提供科学依据,以8年生云南松为试材,采用U*15(157)均匀设计开展复合肥、氮肥、磷肥、镁肥和硼肥配施的试验。处理组合的针叶长、烘干含水率、针叶全氮、全磷和全钾分别为23.90~27.34 cm、55.47%~60.88%、0.17%~0.57%、0.13%~0.33%和0.17%~0.82%,对照的则为24.14 cm、60.75%、0.35%、0.17%和0.29%。其中,全磷和全钾具有显著的差异。处理组合的土壤pH、烘干含水率、速效氮、速效磷、速效钾和胸径增长率分别为4.08~4.69、17.27%~34.59%、22.77~41.91、7.70~11.80、66.44~174.67 mg/kg和23.5%~50.3%,对照的则为4.42、17.27%、23.70、8.23、81.11 mg/kg和22.4%,处理组合间速效磷、速效钾和胸径增长率具有极显著的差异。土壤理化性质与因素具有复杂的相关性,硼肥与胸径增长率呈现显著的正相关;配施复合肥1.6 kg/3 cm、氮肥0.10 kg/3 cm、磷肥0.2 kg/3 cm,镁肥7.5 g/3 cm和硼肥1.5 g/3 cm可改善土壤理化性质,促进云南松幼树胸径生长。  相似文献   

11.
The influence of herbaceous and woody vegetation control, either singly or in combination, on leaf gas exchange, water status, and nutrient relations of planted eastern white pine (Pinus strobus L.) seedlings was examined in a central Ontario clearcut over four consecutive growing seasons (GSs). Net carbon assimilation (An), leaf conductance to water vapour (Gwv), water use efficiency (WUE), and midday leaf water potential (ψm) were measured periodically during the second to fourth GSs of vegetation control treatments, while leaf nutrient relations were examined in GS five. Leaf An and Gwv were reduced (p ≤ 0.05) in the presence of herbaceous vegetation in GS two, by both herbaceous and woody vegetation in GS three, and only by woody vegetation (largely trembling aspen (Populus tremuloides Michx.)) in GS four. Leaf WUE was increased (p ≤ 0.05) in all three GSs in which herbaceous vegetation control was applied and where woody vegetation provided partial shading of planted white pine. Leaf water status was comparatively less responsive to vegetation control treatments, but leaf ψm was increased (p ≤ 0.05) in the presence of woody vegetation in GSs two and four, likely due to shading and reduced atmospheric evaporative demand of the white pine seedling environment. Within a given GS, the effects of vegetation control on An, Gwv, and ψm were strongly linked to treatment-induced changes in total vegetative cover, and light and soil moisture availability. Seedling height, diameter, and volume growth rates were positively correlated with An and WUE in GSs two and three, but less so in GS four. Vector analysis suggested that herbaceous competition induced foliar N, P, and K deficiencies in five-year-old white pine seedlings while competition from aspen resulted in foliar Ca deficiency.  相似文献   

12.
Determining the influences of environmental factors on seedling growth and leaf color may improve our understanding of the chromogenic mechanisms in leaves and the biosynthesis of anthocyanin. To determine the optimum conditions for Betula ‘Royal Frost’ seedling cultivation, we assessed seedling growth and anthocyanin content under natural conditions. The temperature had a significant influence on height but not on radial growth. Between June and September, the anthocyanin content was significantly positively correlated with light intensity and air moisture and significantly negatively correlated with temperature. In single-factor experiments to determine the variation in anthocyanin content in the greenhouse, anthocyanin content increased with increasing soil water content and at first increased, then decreased with increasing pH of the irrigation water and temperature, but decreased with increasing light intensity. K2SO4 can increase the anthocyanin content. So to maintain leaf color, seedlings should be cultivated with < 200 μmol m?2 s?1 light intensity at 20 °C and soil moisture content between 60 and 90%, and the irrigation water should be neutral or alkaline. Additionally, spraying with K2SO4 can be beneficial.  相似文献   

13.
Natural forest succession takes a long time to accumulate sufficient nutrients to support plant growth and enhance soil microbial activity. Human intervention in selecting native pioneer plant species is therefore required to accelerate sustainable restoration. Trema orientalis (L.) Blume, a fast growing pioneer plant species, has the ability to grow in nutrient deficient soils and proves to have reclamation potential in mine wastelands. However, its use has been limited due to low germination percentages and nonsynchronous seed germination. In the present study we tested the effect of sulphuric acid (H2SO4), hydrochloric acid (HCl), gibberellic acid (GA3), and potassium nitrate (KNO3) in varying concentrations and time durations on germination percentages and seed germination synchrony. We found that all treatments had a significant effect in predicting seed germination probabilities. Logistic regression analysis revealed that treatment solution and concentration had a significant effect on seed germination. Treatment with concentrated H2SO4 for 15 min increased germination up to 92% within 20 days with the least imbibition time (8 days) and highest Seedling Vigor Index (491). The scanning electron microscope images of seeds treated with H2SO4 showed complete dissolution of the honeycomb-like network of deposits on the seed coat surface removing the physical barrier and enhancing germination.  相似文献   

14.
Forest harvesting and subsequent regeneration treatments may cause changes in soil and solution chemistry that adversely affect forest productivity and environmental quality. The objective of this study was to assess soil carbon (C), nitrogen (N), and base cation pools and fluxes, and to construct a hydrogen ion (H+) mass balance to identify major processes controlling acidity production and consumption 14 years following whole-tree harvesting and regeneration in a northern forested wetland with underlying mineral soils derived from calcareous glacial drift. Results for soil elemental and nutrient pools in the harvested/regenerated stand were compared to an adjacent non-harvested stand and a riparian zone. The riparian zone had the highest soil total C, total N, and exchangeable calcium (Ca) and magnesium (Mg) pools; however, no difference in exchangeable potassium (K) was evident among stand types. Moreover, no differences between the harvested/regenerated and uncut stands were evident in any of the soil chemical pools.Net export of base cations was minimal and the H+ mass balance indicated that net cation exchange was not a significant process in H+ production or consumption in either the uncut or harvested/regenerated stands. The most striking differences in the H+ mass balance were (1) eight times the H+ consumption from sulfate (SO42−) reduction in the harvested/regenerated stand compared to that in the uncut condition and (2) nearly twice the H+ production due to N immobilization in the harvested/regenerated stand. However, both stand types were net H+ sinks and increases in H+ export due to whole-tree harvesting were not evident.The riparian zone was a net exporter of base cations. This finding was attributed to a combination of base cation exchange and carbonate mineral weathering; data suggested the importance of the latter. More research, however, is required to isolate the contributions of cation exchange and carbonate weathering on base cation export from the riparian zone. Stream chemistry was consistent with that of the riparian zone, indicating a strong linkage between the riparian zone stream chemistry, and whole-tree harvesting had no intermediate term (i.e., 14 years) effects on stream acidification in this managed northern wetland ecosystem.  相似文献   

15.

A 2-yr field trial was conducted on a drained pine bog to measure the dissolution of five phosphorus (P) fertilizers of differing solubility. The rate of fertilizer dissolution was measured using a sequential fractionation which involved pre-extraction with 0.5 M NaCl/TEA followed by 1 M NaOH and a mixed acid (HNO3+HCl+H2SO4) digestion. About 56% of Siilinjärvi apatite, a hard magmatic rock phosphate, dissolved over the 2 yrs. For a commercial P+K fertilizer manufactured from Siilinjärvi apatite and KCl (water-soluble P<0.1%), the corresponding value was 44%. For Moroccan phosphate rock, and a commercial fertilizer manufactured from Moroccan phosphate rock and KCl (water-soluble P=15.8%), the dissolution was about 44% and 58%, respectively. For superphosphate (water-soluble P=79%), the corresponding value was 93%.  相似文献   

16.
Changes in land use management practices may have multiple effects on microclimate and soil properties that affect soil greenhouse gas (GHG) emissions. Soil surface GHG emissions need to be better quantified in order to assess the total environmental costs of current and possible alternative land uses in the Missouri River Floodplain (MRF). The objective of this study was to evaluate soil GHG emissions (CO2, CH4, N2O) in MRF soils under long-term agroforestry (AF), row-crop agriculture (AG) and riparian forest (FOR) systems in response to differences in soil water content, land use, and N fertilizer inputs. Intact soil cores were obtained from all three land use systems and incubated under constant temperature conditions for a period of 94 days using randomized complete block design with three replications. Cores were subjected to three different water regimes: flooded (FLD), optimal for CO2 efflux (OPT), and fluctuating. Additional N fertilizer treatments for the AG and AF land uses were included during the incubation and designated as AG-N and AF-N, respectively. Soil CO2 and N2O emissions were affected by the land use systems and soil moisture regimes. The AF land use resulted in significantly lower cumulative soil CO2 and N2O emissions than FOR soils under the OPT water regime. Nitrogen application to AG and AF did not increase cumulative soil CO2 emissions. FLD resulted in the highest soil N2O and CH4 emissions, but did not cause any increases in soil cumulative CO2 emissions compared to OPT water regime conditions. Cumulative soil CO2 and N2O emissions were positively correlated with soil pH. Soil cumulative soil CH4 emissions were only affected by water regimes and strongly correlated with soil redox potential.  相似文献   

17.
The purpose of this study was to describe changes in the deposition of air pollutants and the response of spruce trees in the period of 1998–2005. The investigation was carried out in twelve sites, mainly national parks. Air pollution level, that is, SO2, NO2, and O3 concentrations in the air, as well as throughfall and soil solution chemical composition was analysed. The reaction of trees was described based on a stand health parameter, that is, defoliation. A decrease in the concentration of SO2 and NO2 in the investigated period was observed. In most of the analysed sites, ozone concentrations in the growing season exceeded the level regarded as harmful to plants. Annual loads of nitrogen and sulphur reaching the forest soil exceeded 10 kg/ha. The data collected for the analysed period confirmed that the health status of forests at the investigated sites did not show a general tendency towards improvement. Also, no dependency between the air pollution level and defoliation rate was found.  相似文献   

18.
We evaluated the effects of three regeneration harvest methods on plant diversity and soil resource availability in mixed-hardwood ecosystems. The study area is in the Wine Spring Creek watershed on the Nantahala National Forest of the Southern Appalachian Mountains in western North Carolina. The regeneration treatments were: an irregular, two-aged shelterwood cut (2A), with 5.0 m2/ha residual basal area; a shelterwood cut (SW), with 9.0 m2/ha residual basal area; a group selection cut (GS), with 0.10–0.20 ha openings and 25% overstory removal on area basis at first entry; fourth, the control, consisted of two uncut sites (UC). Each harvest treatment was replicated three times across the landscape in similar plant community types. Within each treatment area, permanent plots were marked and inventoried for overstory, midstory, and herbaceous layer plants. In each permanent plot, we collected soil samples in winter (December–March) to reduce temporal variation due to vegetation phenological stage and rainfall events. We analyzed soil samples for extractable calcium (Ca), magnesium (Mg), potassium (K), cation exchange capacity (CEC), pH, bulk density, A-horizon depth, total carbon (C), and nitrogen (N). Species diversity of overstory, understory, and herbaceous layer species was evaluated using species richness (S), Shannon–Wiener's index of diversity (H′), and Pielou's evenness index (E). We used direct gradient analysis (non-metric multidimensional scaling, NMS) to explore the changes in vegetation–site relationships among herbaceous layer abundance, and soil characteristics and overstory basal area between pre-harvest (1994) and post-harvest (2000). Twelve minor overstory species were cut from the 2A treatments and nine species were cut from the SW treatments. Thus, it is not surprising that S and H′ were reduced in the overstory on the heavily cut sites. However, most of these species sprouted from cut stumps and were substantially more abundant in the midstory layer after harvest than before. For the midstory, we found higher S and H′ on the harvested treatments than the control; however, H′ did not differ significantly among the harvest treatments. We measured an increase in herbaceous layer H′ on the more heavily cut treatments (2A and SW) after harvest. We found an increase in average distance in the NMS ordination among sites in 2000 compared to 1994, which suggests greater herbaceous species diversity after harvest. However, we did not see a clear separation among harvest treatments in the NMS ordination.  相似文献   

19.
Partitioning the respiratory components of soil surface CO2 efflux is important in understanding carbon turnover and in identifying the soil carbon sink/source function in response to land-use change. The sensitivities of soil respiration components on changing climate patterns are currently not fully understood. We used trench and isotopic methods to separate total soil respiration into autotrophic (R A ) and heterotrophic components (R H ). This study was undertaken on a Robinia pseudoacacia L. plantation in the southern Taihang Mountains, China. The fractionation of soil 13CO2 was analyzed by comparing the δ13C of soil CO2 extracted from buried steel tubes with results from Gas Vapor Probe Kits at a depth of 50 cm at the preliminary test (2.03‰). The results showed that the contribution of autotrophic respiration (fR A ) increased with increasing soil depth. The contribution of heterotrophic respiration (fR H ) declined with increasing soil depth. The contribution of autotrophic respiration was similar whether estimated by the trench method (fR A , 23.50%) or by the isotopic method in which a difference in value of 13C between soil and plant prevailed in the natural state (RC, 21.03%). The experimental error produced by the trench method was insignificant as compared with that produced by the isotopic method, providing a technical basis for further investigations.  相似文献   

20.
Seasonal changes in carbon isotope discrimination (Δ) and gas exchange traits were assessed in four Populus×euramericana clones differing in growth potential. Measurements were made during the second year after establishment in the field under two watering regimes, which were defined by the time-span between flood irrigations, hence resulting in different dry-down cycles: high irrigation (conservative schedule currently applied in the Ebro Valley, Spain) and low irrigation (equivalent to about a one-fourth reduction in water inputs). Net CO2 assimilation rate (A), stomatal conductance (gs), intrinsic water-use efficiency (A/gs) and other related photosynthetic traits (leaf nitrogen concentration, leaf greenness and leaf mass per area) were measured prior to watering, and Δ was analysed in water-soluble leaf extracts (Δs) and bulk leaves (Δl). Stem growth was monitored over 3 years starting at the year of establishment (1998). Data were subjected to a repeated measures ANOVA over time for a randomised block split-plot design across watering regimes. Significant differences between watering regimes were detected using a long-term estimate of photosynthetic performance such as Δl, in agreement with changes in soil water status and evapotranspirative demand. However, the lack of significant genotype×watering regime interactions for gas exchange traits and Δs suggested that water shortage imposed by low irrigation was not sufficient to reveal physiological adaptations to drought. In this regard, the reduction in water inputs brought about by low irrigation did not reduce tree growth for any of the clones, suggesting that the current irrigation scheme employed in the region is superfluous to the water consumption needs of poplars. Genotypic variation was detected in gas exchange traits, Δs, Δl and stem growth under both watering treatments. Significant correlations with stem volume for Δs (r = −0.60, p<0.05) and A (r = + 0.61, p<0.05) suggested that growth was improved by higher water-use efficiency (the ratio of carbon fixed to water lost, as inferred by Δs) due to variation in A rather than in gs. This observation corroborated the expectation derived from current theories that a lower Δ is related to higher stem volume, as a result of changes in net CO2 assimilation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号