首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of irrigation method and quantity on squash yield and quality   总被引:1,自引:0,他引:1  
Squash yield and quality under furrow and trickle irrigation methods and their responses to different irrigation quantities were evaluated in 2010 spring and fall growing seasons. A field experiment was conducted using squash (Cucurbita pepo L.) grown in northern Egypt at Shibin El Kom, Menofia. A randomized split-plot design was used with irrigation methods as main plots and different irrigation quantities randomly distributed within either furrow or trickle irrigation methods. Irrigation quantity was a fraction of crop evapotranspiration (ETc) as: 0.5, 0.75, 1.0, 1.25, and 1.5 ETc. Each treatment was repeated three times, two of five rows from each replicate were left for squash seed production. In well-watered conditions (1.0 ETc), seasonal water use by squash was 304 and 344 mm over 93 days in spring and 238 and 272 mm over 101 days in fall under trickle and furrow irrigation methods, respectively. Squash fruit yield and quality were significantly affected by season and both irrigation method and quantity. Fruit number and length were not affected by irrigation method and growing season, respectively. Interaction between season and irrigation quantity significantly affected leaf area index, total soluble solid (TSS), and fruit weight. Moreover, seed yield and quality were significantly affected by growing season and both irrigation method and quantity except harvest index, which was not affected by irrigation method. Significant differences for the interaction between season and irrigation method were only found for seed yield and 100 seeds weight. Except for harvest index, no significant difference was observed by interaction between season and irrigation quantity. Both fruit and seed yields were significantly affected in a linear relationship (r2 ≥ 0.91) by either deficit or surplus irrigation quantities under both irrigation methods. Adequate irrigation quantity under trickle irrigation, relative to that of furrow, enhanced squash yield and improved its quality in both growing seasons. Fall growing season was not appropriate for seed production due to obtaining many of empty seeds caused by low weather variables at the end of the season. The results from small experiment were extrapolated to large field to find out optimal irrigation scheduling under non-uniform of irrigation application.  相似文献   

2.
Summary This paper reports the results of a three-year field study conducted in El Salvador, Central America to develop yield response functions for corn to irrigation levels and nitrogen fertilizer. Four levels of irrigation were imposed using two application methods, furrow and trickle, in combination with four nitrogen fertilizer rates. Yields generally increased with higher levels of applied water and with higher nitrogen rates up to 200 kg N/ha, with a strong interaction between these two variables. Yield was independent of irrigation method although less water was applied with the trickle system.In cooperation with the El Salvador Ministry of Agriculture and Livestock and the United States Agency for International DevelopmentPartial support was provided under Contract AID/ta-c-1103Research Engineer, Professor of Soils, Research Agronomist, Research Assistant, Utah State University; and Agronomist, Peace Corps, respectively  相似文献   

3.
The salinity in the root zone increases with the application of relatively saline groundwater. Therefore, a limited water supply coupled with high pumping cost and salinity hazards, makes it more important than ever that irrigation water be used efficiently and judiciously. In the present study, farmer's practices of irrigation application methods (Field 1) were compared with the water saving techniques (Field 2) for crop yield and salinization for two years with maize–wheat–dhanicha cropping pattern. For maize crop, regular furrow method of irrigation was used in Field 1 and alternate furrow method of irrigation was used in Field 2. For wheat experiments, basin irrigation method of water application was compared with bed and furrow method. For dhanicha, basin irrigation was applied in both the fields. The results showed that about 36% water was saved by applying irrigation water in alternate furrows in each season without compromising the maize crop yield. The salt accumulation in root zone in alternate furrow field was less than that in regular furrow field. The salinity level near the surface increased substantially in both the fields. The water saving in wheat crop under bed and furrow was 9–12% in both seasons. The salinization process in both fields during wheat crop was almost same except redistribution of salts throughout the root zone in basin field of wheat. The salinity developed in root zone during two major growing seasons was leached in monsoon.  相似文献   

4.
Because of the spatial and temporal variabilities of the advance infiltration process, furrow irrigation investigations should not be limited to a single furrow irrigation event when using a modelling approach. The paper deals with the development and application of simulation of furrow irrigation practices (SOFIP), a model used to analyse furrow irrigation practices that take into account spatial and temporal variabilities of the advance infiltration process. SOFIP can be used to compare alternative furrow irrigation management strategies and find options that mitigate local deep-percolation risks while ensuring a crop yield level that is acceptable to the farmer. The model is comprised of three distinct modelling elements. The first element is RAIEOPT, a hydraulic model that predicts the advance infiltration process. Infiltration prediction in RAIEOPT depends on a soil moisture deficit parameter. PILOTE, a crop model, which is designed to simulate soil water balance and predict yield values, updates the soil moisture parameter. This parameter is an input of a parameter generator (PG), the third model component, which in turn provides RAIEOPT with the data required to simulate irrigation at the scale of an N-furrow set. The study of sources of variability and their impact on irrigation advance, based on field observations, allowed us to build a robust PG. Model applications show that irrigation practices must account for inter-furrow advance variability when optimising furrow irrigation systems. The impact of advance variability on deep percolation and crop yield losses depends on both climatic conditions and irrigation practices.  相似文献   

5.
隔沟交替灌溉是以通过改善作物根信号功能、光合作用、蒸腾作用和气孔导度等生理特性,进而提高作物产量为目的的一项高效节水灌溉技术。介绍了隔沟交替灌溉技术发展概况,系统阐述隔沟交替灌溉的作用机理,主要包括根系系统的吸收补偿功能、农田土壤水分消耗和水分利用效率变化3个方面,明确了该技术在作物栽培中的应用效果与发展前景。隔沟交替灌溉可显著提高作物产量和水分利用效率,在优质高产节水型农业生产中具有重要意义。   相似文献   

6.
不同水肥措施下的冬小麦水氮利用和生物效应研究   总被引:7,自引:1,他引:6  
【目的】寻找合适的冬小麦水肥方案。【方法】采用田间试验方法,在传统畦灌和水肥一体化微喷灌下分别设置不同施氮肥处理,研究了小麦干物质积累、产量、水氮利用和土壤贮水量。【结果】与传统畦灌比,微喷灌各处理灌水量减少50%,干物质积累量、产量、氮肥生产效率、水分利用效率分别增加28.2%~41.1%、0.2%~27.3%、0.8%~76.6%和23.3%~61.7%。其中传统畦灌下,推荐施氮肥与不施氮肥、农民习惯施氮肥和推荐施氮肥减氮20%处理比较,小麦干物质积累量、产量、氮肥生产效率、水分利用效率分别增加4.0%~11.4%、1.8%~26.9%、32.1%~75.3%、0.8%~28.2%。微喷灌下,与推荐施氮肥比,推荐施氮肥减氮20%的小麦干物质积累量、产量、氮肥生产效率、水分利用效率分别提高6.4%、4.5%、0.8%、2.3%。【结论】综合比较,水肥一体化微喷灌下推荐施氮肥减氮20%表现最优,提高冬小麦水氮利用效率,稳定产量,是节水减肥可推荐的有效途径。  相似文献   

7.
青贮玉米是河北省粮改饲的主要目标作物。为制定合理的水肥管理措施,提高青贮玉米的产量,选取灌水方式和施肥量作为因子进行青贮玉米试验。灌水方式设置畦灌和沟灌两个水平,施肥量设置4个水平,肥料用量在300~750 kg/hm^+2之间。研究结果表明,沟灌与畦灌相比,株高和鲜重分别增加2.2%和3.6%,沟灌有利于青储玉米的生长和产量的提高。施肥量对青储玉米的生长和产量影响显著,施肥量600 kg/hm^+2时青储玉米生长状况和产量最好,与750、450和300 kg/hm^+2施肥量水平相比,株高、叶面积指数、叶绿素和鲜重分别增加0.11%~27.8%、4.01%~10.55%、1.1%~1.8%和3.6%~15.6%。青储玉米鲜重产量介于69.09至81.4 t/hm^+2之间。相关性和回归分析结果表明青储玉米鲜重与株高和叶面积指数之间呈极显著正相关,沟灌、施肥量600 kg/hm^+2的处理组合有助于株高和叶面积生长,因此也有助于获得较高的青储玉米产量。  相似文献   

8.
The Southeast U.S. receives an average of 1300 mm annual rainfall, however poor seasonal distribution of rainfall often limits production. Irrigation is used during the growing season to supplement rainfall to sustain profitable crop production. Increased water capture would improve water use efficiency and reduce irrigation requirements. Furrow diking has been proposed as a cost effective management practice that is designed to create a series of storage basins in the furrow between crop rows to catch and retain rainfall and irrigation water. Furrow diking has received much attention in arid and semi-arid regions with mixed results, yet has not been adapted for cotton production in the Southeast U.S. Our objectives were to evaluate the agronomic response and economic feasibility of producing cotton with and without furrow diking in conventional tillage over a range of irrigation rates including no irrigation. Studies were conducted at two research sites each year from 2005 to 2007. Irrigation scheduling was based on Irrigator Pro for Cotton software. The use of furrow diking in these studies periodically reduced water consumption and improved yield and net returns. In 2006 and 2007, when irrigation scheduling was based on soil water status, an average of 76 mm ha−1 of irrigation water was saved by furrow diking, producing similar cotton yield and net returns. Furrow diking improved cotton yield an average of 171 kg ha−1 and net return by $245 ha−1 over multiple irrigation rates, in 1 of 3 years. We conclude that furrow diking has the capability to reduce irrigation requirements and the costs associated with irrigation when rainfall is periodic and drought is not severe.  相似文献   

9.
One of the main attributes of trickle irrigation is that it enables the available water to be utilised as efficiently as possible. This is achieved through the elimination of waste that is an inevitable consequence of normal irrigation practice.The water requirements of crops can be calculated to a reasonable degree of accuracy using formulae that have been developed to relate evapotranspiration to the evaporation from a U.S. Class A pan evaporimeter, with suitable adjustments for the particular crop and the degree of ground cover.The aims of the experiments described in this paper were:
1. (1) to compare the yield of field tomatoes under trickle irrigation and furrow irrigation over a range of irrigation frequencies and amounts that can reasonably be used for both methods;
2. (2) to compare the effects of irrigation frequency over a range of irrigation amounts that are typical for each irrigation method;
3. (3) to compare the effects of irrigation amounts over a range of irrigation frequencies that are typical for each irrigation method;
4. (4) to examine the interaction, if any, between irrigation frequency and amount.
The results of the trial showed that there was no difference in yield between trickle irrigation and furrow irrigation over a range of conditions for which they could legitimately be compared. At the same time it should be realized that the results for furrow irrigation on small plots may not adequately represent the normal farm practice for this method, where less efficient watering occurs due to long runs and unavoidable inequalities in water application.For both irrigation methods there was a consistent trend of decreasing yields with increasing irrigation frequency. Where departures from this trend occurred in unusual irrigation conditions (i.e. continuous irrigation and prolonged drought) the effect is explained by physiological causes that relate to the particular conditions. In such cases only, there was an interaction between irrigation frequency and amount.For each irrigation frequency the highest yields were obtained for the optimum amounts as calculated to match the potential evapotranspiration rate. Equal amounts of under-watering and over-watering resulted in approximately the same reductions in yields.The results from the trial indicate that the highest yields and greatest efficiency of water use occur at frequent intervals with an amount of applied water approximately equal to that calculated from simple formulae relating evapotranspiration to measured pan evaporation. Extrapolation of the results of particular trials to other crops, soils and climates should be treated with caution. However, the agreement of the results with those predicted from physiological and empirical data, and the fact that the results from other experiments also agree with such formulae, give cause for confidence in predicting the responses to irrigation timing and amounts over a wide range of conditions.  相似文献   

10.
Yield of processing tomato has increased by 53% over the past 35 years. Thus, concerns exist about the current seasonal crop evapotranspiration requirements of processing tomato compared to the past published requirements, which were about 645 mm. Also, the mid-season crop coefficient for processing tomato developed 35 years ago with sprinkler irrigation was 1.25, while a mid-season coefficient developed 20 years ago with subsurface drip irrigation was 1.05. Because of the age and variability of crop coefficients and the long-term yield increase, a study was conducted to determine the seasonal crop evapotranspiration and crop coefficients of processing tomatoes using the Bowen ratio energy balance method in eight commercial fields from 2001 to 2004. Measurements were made in both furrow- and drip-irrigated fields. Results showed seasonal crop evapotranspiration to range from 528 to 752 mm with an average of 648 mm. No statistical differences were found between furrow and drip irrigation. Mid-season crop coefficients varied between 0.96 and 1.09 with statistically similar values between furrow- and drip-irrigation for a given year. Current evapotranspiration rates were similar to those of the early 1970s, indicating that the water use efficiency of processing tomato increased substantially with time during the past 35 years.  相似文献   

11.
A 4-year field experiment was conducted in a semi-arid area to evaluate the response of each furrow and alternate furrow irrigation in wheat-cotton system using irrigation waters of different qualities in a calcareous soil. Irrigation was applied to each and alternate furrow of bed-planted wheat followed by ridge-planted cotton for comparison with standard check-basin method of irrigation to both the crops. These methods of irrigation were evaluated under three water qualities namely good quality canal water (CW), poor quality tube well water (TW) and pre-sowing irrigation to each crop with CW and all subsequent irrigations with TW (CWpsi + TW). The pooled results over 4 years revealed that wheat grain yield was not affected significantly with quality of irrigation water, but significant yield reduction was observed in alternate bed irrigation under canal water and tube well water irrigations. In cotton, poor quality tube well water significantly reduced the seed cotton yield in all the three methods of planting. The pre-sowing irrigation with canal water and all subsequent irrigations with tube well water improved the seed cotton yield when compared with tube well water alone. However, this yield increase was significant only in alternate furrow irrigation, and the yield obtained was on a par with yield under alternate furrow in CW. When compared to check-basin irrigation, each furrow and alternate furrow irrigation resulted in a saving of 30 and 49% of irrigation water in bed-planted wheat, whereas the corresponding savings in ridge-planted cotton were 20 and 42%, respectively. Reduced use of irrigation water under alternate furrow, without any significant reduction in yield, resulted in 28.1, 23.9 and 43.2% higher water use efficiency in wheat under CW, TW and CWpsi + TW, respectively. The corresponding increase under cotton was 8.2, 2.1 and 19.5%. The implementation of alternate furrow irrigation improved the water use efficiency without any loss in yield, thus reduced use of irrigation water especially under poor quality irrigation water with pre-sowing irrigation with canal water reduced the deteriorating effects on yield and soil under these calcareous soils.  相似文献   

12.
膜下滴灌棉花田间需水规律研究   总被引:17,自引:0,他引:17  
以田间试验为基础对膜下滴灌棉花的田间需水规律进行了对比研究 ,从土壤 -作物 -大气连续体的角度对该技术下影响棉花耗水的主要因素进行了分析 ,找到了膜下滴灌比沟灌省水的依据 ,同时发现对棉花采用膜下滴灌技术可改善需水量在各生育阶段的合理分配 ,提高叶面积指数 LAI,从生理上提高了作物水分利用率及增产潜力  相似文献   

13.
The influences of water quantity and quality on young lemon trees (Eureka) were studied at the University of Jordan Research Station at the Jordan Valley for 5 years (1996–2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. The primary effect of excess salinity is that it renders less water available to plants although some is still present in the root zone. Lemon trees water requirements should be modified year by year since planting according to the percentage shaded area, and this will lead into substantial water saving. Both evaporation from class A pan and the percentage shaded area can be used to give a satisfactory estimate of the lemon trees water requirement at the different growth stages. The highest lemon fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage area. Increasing irrigation water salinity 3.7 times increased average crop root zone salinity by about 3.8–4.1 times.The high salt concentration at the soil surface is due to high evaporation rate from wetted areas and the nature of soil water distribution associated with drip irrigation system. Then, the salt concentration decreased until the second depth, thereafter, salt concentration followed the bulb shape of the wetted soil volume under trickle irrigation. Irrigation water salinity is very important factor that should be managed with limited (deficit) irrigation. But increasing amount of applied saline water could result in a negative effect on crop yield and environment such as increasing average crop root zone salinity, nutrient leaching, water logging, increasing the drainage water load of salinity which might pollute ground water and other water sources.  相似文献   

14.
Summary A kinematic wave mathematical model which simulates the hydraulics of continuous flow furrow irrigation was linked with a crop yield model and used in combination with an economic model to analyze the effects of inflow rate, water infiltration characteristics and furrow length on uniformity of infiltrated water, runoff, gross profits and optimal number of 12 hour irrigations for corn (Zea mays) assuming other management practices to be constant. Higher uniformity of infiltrated water but more runoff and, in some cases, more deep percolation resulted from increased flow rates. Increases in uniformity of infiltrated water leads to greater profits, which are however offset by the associated increases in runoff and deep percolation. The study shows economically optimal water management for furrow irrigation can be obtained with proper balance between changes in the input variables and runoff and to some extent deep percolation.Contribution of the Department of Soil and Environmental Sciences, University of California, Riverside 92521. This study was supported by California State Water Resources Control Board Contract # 2-043-300-0  相似文献   

15.
Summary Little research has been reported which quantifies the response of a carrot (Daucus carrota L. var sativa DC.) seed crop to water management. While the area of seed production of this crop in the United States is less than 3000ha, the return ranges from US $2000 to $ 10 000 ha–1. Because of the need to mature and dry the seed on the plant, carrot seed is generally grown in areas with negligible summer rain and thus depends on irrigation to supply the crop water requirement. A study was conducted to determine the effect of irrigation water management on seed production and crop water use of carrots grown by the root-to-seed method. Two carrot types (Nantes and Imperator) were evaluated in 9 irrigation treatments over a three year study period. Irrigation treatments which replaced a percentage of the calculated crop evapotranspiration on either a daily basis or when a soil water depletion reached 30 mm were used. A trickle irrigation system with the laterals placed on the carrot bed was used to apply a uniform and accurate amount of water. There was a marked difference in the crop response to the water management of the two carrot types used. The Nantes type exhibited a positive response to moderate water deficits in terms of improved pure live seed (PLS) yield while the Imperator achieved its maximum yield when it was not stressed. Higher irrigation applications in the Nantes type resulted in reduced yields while the Imperator was not affected after its non-stress water requirement was met. Soil water data indicated that the most active zone of extraction of water was to a depth of 1.5 m in the soil profile. As the depth of applied water approached the crop water requirement, the depth of extraction was reduced. Increasing the frequency of irrigation also tended to reduce the depth of extraction of soil water. A total crop water use of approximately 550 to 620 mm was needed to achieve the best PLS yield which is roughly equal to potential evapotranspiration in the San Joaquin Valley, during the time that the crop water use was calculated. In such a climate, the irrigation interval should not exceed 3 to 5 days depending on the time of year.  相似文献   

16.
不同灌溉方式对制种玉米产量及水分利用效率的影响   总被引:1,自引:0,他引:1  
通过田间试验,研究了畦灌、常规沟灌、隔沟交替灌3种灌溉方式对制种玉米产量及水分利用效率的影响,结果表明,不同灌溉方式下,制种玉米产量为8.73~10.87 t/hm~2,耗水量为349.7~625.0 mm,WUE为1.40~3.01kg/m~3。隔沟交替灌溉方式耗水量最低,畦灌方式最高,常规沟灌居中。相同灌溉定额条件下,隔沟交替灌制种玉米产量较常规沟灌增减幅度在-2.43%~10.24%。常规沟灌方式若能保证作物需水关键期的灌溉,适度减少灌水不会造成制种玉米减产。产量构成要素结果表明,行粒数、出籽率、穗长、穗粗、秃尖长、千粒重产量构成要素对产量的累积贡献率达85.54%。在甘肃河西地区,制种玉米全生育期灌水8次(苗期1次,拔节期2次,抽穗期1次,灌浆期2次,乳熟期2次),灌溉定额2 250 m~3/hm~2的隔沟交替灌溉方式(T6处理)能稳定提高产量和水分利用效率。  相似文献   

17.
The effects of irrigation methods, application rates and initial moisture content on soil water storage and surface runoff were studied in soils liable to surface crust formation during 1995–1996 at the University of Jordan Research Station near Al-Muwaqqar village. Four irrigation methods were tested (sprinkler, furrow, basin and trickle) and four application rates (6.2, 14.4, 24.4 and 28.4 mm/h). Two runs were performed (soil initially dry and soil initially wet). Basin irrigation provided the highest application efficiency followed by trickle, sprinkler and furrow irrigation methods. Entrapping water by the basin borders increased soil water storage by allowing more water to infiltrate through the surface crust. Decreasing the application rate from 28.4 to 6.2 mm/h increased soil water storage significantly in all 150 mm layers to a depth of 600 mm. If the soil was already wet, soil moisture storage decreased owing to siltation during the prewetting and formation of a surface crust and low soil water storage capacity. A sedimentary crust formed at the bottom of the furrows in the furrow irrigation treatment, which reduced soil water storage and increased surface runoff significantly owing to the reduction in infiltration. Increasing the application rate from 6.2 to 28.4 mm/h in the furrow surface irrigation treatment increased the runoff discharge 10-fold. Even with the lowest application rate the runoff coefficient under sprinkler irrigation was 20.3% indicating high susceptibility of Al-Muwaqqar soils to surface crust formation.  相似文献   

18.
The effects of supplemental irrigation, sand columns and blocked furrows on soil water distribution and barley yield were studied on arid soils affected by surface crusts. The sand columns were 50 mm diameter, 600 mm deep, and filled with sand of 0.375 mm mean diameter. The blocked furrows were trenches about 250 mm deep, 300 mm wide, and 6 m long established perpendicular to the slope direction. Sand column and furrow treatments significantly increased soil water storage compared with natural or control treatments. Soil water storage significantly increased by about 210% and 230% near the center of the sand column and the furrow treatments, respectively, relative to the control treatment. For sand column treatments, soil water storage decreased linearly with distance from the center of the sand column to about 2.5 m, while for the furrow treatment soil water storage decreased logarithmically to a distance of about 1.0 m, beyond which the soil water storage was not significantly different from the natural or control treatments. The furrow and sand column treatments significantly increased the water application efficiency, seasonal consumptive use and barley grain and straw yields compared with natural and control treatments. Increasing furrow spacing increased the catchment area and consequently crop production per furrow, but decreased crop production per unit total (cultivated and catchment) area. Decreasing sand column spacing reduced surface runoff and increased soil water storage and consequently barley grain and straw yields. Supplemental irrigation is essential for grain production in limited rainfall areas. Soil management is also required to overcome the problems of the soil surface crusting and the low permeability of subsurface soil layers for maximum rainwater efficiency, and for optimal crop production with minimum supplemental irrigation water. Where agricultural land is not limited, furrowed soil surfaces appear to be the most suitable technique for barley grain production. Sand columns with sprinkler irrigation might be more suitable for growing barley as forage crop where agricultural land is limited. Received: 19 October 1998  相似文献   

19.
Subsurface drip irrigation of processing tomatoes is increasing in California. The common design approach is to bury drip lines 0.2–0.36 m deep in the middle of the plant row, which places drip lines directly beneath plant rows. This design limits the use of the drip irrigation system to only those crops compatible with this drip line and bed spacing, and thus, other design approaches are being investigated to increase the flexibility of the drip systems. These approaches are installing drip lines in alternate furrows and installing drip lines in every furrow, both of which place drip lines midway between plant rows. The furrows are the result of the cultural practices used to form beds for planting.This study investigated the effect of the different drip line placements on crop yield and quality. Results showed that the highest yields occurred for the buried placement and the smallest yields for the alternate furrow placement. For the buried placement, soil water content and root density were concentrated around the drip lines, directly beneath the plant rows, while for the furrow placements, zones of high soil water content and root density did not coincide with the plant rows. However, some growers have found the furrow placement to reduce some of the disease problems normally experienced with the traditional furrow irrigation methods.  相似文献   

20.
Analysis of trickle irrigation with application to design problems   总被引:6,自引:0,他引:6  
Summary Designing trickle irrigation systems involves the selection of a proper combination of trickle discharge rate, spacing between emitters, diameter and length of the lateral system for any given set of soil, crop and climatic conditions. Trickle irrigation is treated as transient and steady axisymmetric infiltration processes. An existing numerical solution to nonsteady state infiltration is used to quantify the effect of soil hydraulic properties and trickle discharge rates on emitter spacing (Fig. 2). The results of the analysis suggest the possibility of controlling the wetted volume of a soil by regulating the emitter discharge according to soil properties (Figs. 3 and 4). The surface distribution of a transformed soil water content (or pressure) function (Fig. 5) is derived from a linearized solution to steady infiltration. The analysis of steady and non-steady infiltration is employed to estimate the spacing between emitters as a function of discharge and water pressure conditions between emitters using hydraulic soil data (Fig. 6). Hydraulic conductivity parameters are given for 17 different soils (Table 1) to be used for design purposes. Theoretical analysis of soil water is combined with hydraulic principles to derive lateral diameter and length for engineering design requirements.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1977 Series, No. 134-E  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号