首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Afforestation and ecological restoration have often been carried out with fast-growing exotic tree species because of their high apparent growth and yield. Moreover, fast-growing forest plantations have become an important component of mitigation measures to offset greenhouse gas emissions. However, information on the long-term performance of exotic and fast-growing species is often lacking especially with respect to their vulnerability to disturbance compared to native species. We compared carbon (C) storage and C accumulation rates in vegetation (above- and belowground) and soil in 21-year-old exotic slash pine (Pinus elliottii Engelm.) and native Masson pine (Pinus massoniana Lamb.) plantations, as well as their responses to a severe ice storm in 2008. Our results showed that mean C storage was 116.77 ± 7.49 t C ha?1 in slash pine plantation and 117.89 ± 8.27 t C ha?1 in Masson pine plantation. The aboveground C increased at a rate of 2.18 t C ha?1 year?1 in Masson pine and 2.23 t C ha?1 year?1 in slash pine plantation, and there was no significant difference in C storage accumulation between the two plantation types. However, we observed significant differences in ice storm damage with nearly 7.5 % of aboveground biomass loss in slash pine plantation compared with only 0.3 % loss in Masson pine plantation. Our findings indicated that the native pine species was more resistant to ice storm because of their adaptive biological traits (tree shape, crown structure, and leaf surface area). Overall, the native pine species might be a safer choice for both afforestation and ecological restoration in our study region.  相似文献   

2.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

3.

Key message

Carbon stock density was quite similar in planted vs natural forest of Masson’s pine ( Pinus massoniana Lamb.) in China across three ages (7, 15, and 50 years). The stock in the standing trees was larger in planted than in natural forests, but this difference was compensated by larger stocks in the soil and the debris of natural forests.

Context

Most studies on the carbon stocks are focused on management strategies to maximize carbon stocks. We still lack data comparing planted vs natural conifer forests.

Aims

We compared carbon storage in the different compartment (vegetation, soil, debris) along a chronosequence of Masson’s pine plantations vs natural forests.

Methods

We investigated 58 Masson’s pine (Pinus massoniana Lamb.) forest stands (20 m?×?50 m plots), that differ in stand management (planted and natural forests) and age (young, middle-aged, and mature ages) and then calculated the carbon stock densities of vegetation biomass (tree, shrub, and herb), debris, and soil.

Results

The carbon stock densities in the planted and natural Masson’s pine forest ecosystems ranged from 78 to 210 Mg ha?1 and from 97 to 177 Mg ha?1 respectively. The carbon stock densities in the vegetation were significantly greater in planted forests than in natural forests. A lower carbon stock density in debris and soil alleviated the increase of biomass carbon stock densities in planted vs natural forests, leading to similar carbon stock densities at ecosystem level. The carbon stock densities in the vegetation increased with age, whereas those of debris and soil remained stable.

Conclusions

Planted forests of Masson’s pine sequester similiar amounts of carbon at ecosystem level to those in natural forests, reinforcing the idea that planted pine forests can contribute to the mitigation of greenhouse gas emission.
  相似文献   

4.

Key message

The suite of traits expressed as seedlings by coastal and mountain longleaf pine and south Florida slash pine suggest they can survive fire in the seedling stage. In contrast, loblolly pine and typical slash pine tolerate fire when mature but do not exhibit traits that allow them to survive fire when young, representing a different strategy for survival in frequently burned communities.

Context

Fire is an important driver in the distribution and abundance of southern US pine species, and seedling fire tolerance often determines individual survival under frequent fire regimes.

Aims

We investigated seedling growth, biomass allocation, needle distribution, bark thickness, and total non-structural carbohydrate (TNC) storage in taproots and related them to the expression of fire-tolerance for five species or types, including loblolly pine (Pinus taeda L.), two longleaf pine (P. palustris Mill.) types representing two distinct ecological communities (coastal and mountain) and two slash pine (P. elliottii Englem.) varieties.

Methods

We analyzed the relationship of seedling growth, biomass characteristics, and total non-structural carbohydrate storage between species by using analysis of variance.

Results

Both coastal and mountain longleaf pines had thick bark, long, densely arranged needles, and a grass-stage. South Florida slash pine shared the same suite of traits but, contrary to previous reports, displayed reduced height growth rather than a grass-stage. In contrast, loblolly pine and typical slash pine had faster height growth, more branching, lower needle density, and thinner bark. Both longleaf pines and south Florida slash pine also had higher TNC storage in taproots than either loblolly or typical slash pines.

Conclusion

The relative strength of expression of these fire-adaptation traits among the five species types generally matches the fire-return intervals associated with each species’ habitat, suggesting the importance of fire regimes in determining the distribution and abundance of the studied species.
  相似文献   

5.
We quantified the effect of water and nutrient availability on aboveground biomass and nitrogen accumulation and partitioning in four species from the southeastern United States, loblolly pine (Pinus taeda), slash pine (Pinus elliottii), sweetgum (Liquidambar styraciflua), and sycamore (Platanus occidentalis). The 6-year-old stands received five levels of resource input (control, irrigation with 3.05 cm water week−1, irrigation + 57 kg N ha−1 year−1, irrigation + 85 kg N ha−1 year−1, and irrigation + 114 kg N ha−1 year−1). Irrigation significantly increased foliage, stem, and branch biomass for sweetgum and sycamore, culminating in 103% and 238% increases in total aboveground biomass. Fertilization significantly increased aboveground components for all species resulting in 49, 58, 281, and 132% increases in total aboveground biomass for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Standing total aboveground biomass of the fertilized treatments reached 79, 59, 48, and 54 Mg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased foliar nitrogen concentration for loblolly pine, sweetgum, and sycamore foliage. Irrigation increased total stand nitrogen content by 6, 14, 93, and 161% for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased total nitrogen content by 62, 53, 172, and 69% with maximum nitrogen contents of 267, 212, 237, and 203 kg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Growth efficiency (stem growth per unit of leaf biomass) and nitrogen use efficiency (stem growth per unit of foliar nitrogen content) increased for the sycamore and sweetgum, but not the loblolly or slash pine.  相似文献   

6.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

7.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

8.
The effects of wax myrtle (Myrica cerifera L.) on the nitrogen cycle were examined in a 23-year-old slash pine (Pinus elliottii Engelm. var. elliottii) plantation located near Gainesville, FL. These shrubs occurred naturally as an understory and had a crown cover of 8% of the study area. The potential rate of nitrogen fixation by wax myrtle was estimated to be 13 g N m?2 year?1, or 10.6 kg N ha?1 year?1 on a stand wide basis. Wax myrtle fixed substantial amounts of nitrogen throughout the year although winter rates were significantly less due to the greatly reduced activity of old nodules during that season. The average accumulation rate of nitrogen beneath wax myrtle was 1.5 g N m?2 year?1 in the soil and 0.9 g N m?2 year?1 in the forest floor. On a stand wide basis this amounted to an accretion of 1.9 kg N ha?1 year?1 in the soil and forest floor.  相似文献   

9.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

10.
The impacts of wood harvest, biomass removal and inter-rotation site management practices on productivity of Acacia mangium in South Sumatra were studied over 12 years across successive rotations. The productivity measured as MAI increased from 29.4 m3 ha?1 year?1 in the first to 48.0 m3 ha?1 year?1 in the second rotation. Whole tree harvesting (total stem, branches and leaves) caused a 21 % reduction in volume compared to harvesting merchantable wood alone in the next rotation. The rates of nutrients accumulation in trees were highest during the first year of growth, and declined from age 2 years. Significant amounts of nutrients were recycled through litter fall from 1 year after planting. Results highlight the importance of management which promotes nutrient supply on stand growth. Removal of slash and litter lowered soil pH, by about 0.1 unit. A small reduction was also found in soil organic carbon and nitrogen in the top soil during the first 3–4 years but values returned to pre-harvest levels by the end of the rotation. Extractable soil phosphorus and exchangeable cations decreased by the end of second rotation but these measures underestimate the nutrient pools available for A. mangium. These findings along with results from other studies have helped to implement operations which promote conservation of site resources for sustainable production in the region.  相似文献   

11.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

12.
Urban expansion increases the need for, and pressure on, green areas. Reforestation projects in the rural–urban fringe represent an opportunity for enhancing the environmental quality of peri-urban spaces and a means to contribute to cities carbon neutrality policies. Yet, relatively little information exists regarding the long term (10–25 years) survival and growth rate in urban and peri-urban plantations. This paper reports and discusses the results achieved by a reforestation in the peri-urban space of Rome (Italy), 25 years after its establishment. The plantation has been periodically surveyed between 6 and 24 years of age by means of continuous inventories, with the aim of monitoring growth dynamics. Permanent sample plots have been investigated and stratified by tree species composition (broadleaves vs. conifers, single vs. multispecies) for data analysis. On the whole, plantations show suitable results in terms of rate of growth, carbon storage and uptake, especially in coniferous and mixed stands. The average stand volume of the forest plantation, currently ranges from one-and-a third to one-and-a-half times the average values estimated for natural high forest stands of the same age and species groups at country level. The species groups exhibit differential growth patterns over the observed period, that are mainly due to differences in the ecological traits of the planted trees. Ten years after the establishment, the average annual value of carbon uptake in conifer and mixed species group exceeds 10 Mg CO2 equivalent ha?1 year?1, a figure corresponding to 4 times the value of deciduous broadleaves (oaks and other species) and 1.5 times the value of evergreen oaks. Twenty years after the establishment, the average annual carbon uptake peaks to 25 Mg CO2 equivalent ha?1 year?1 in the mixed species group, exceeds 15 Mg CO2 equivalent ha?1 year?1 in the conifers, and ranks between 6 and 12.5 Mg CO2 equivalent ha?1 year?1 in the groups dominated by broadleaved species. Overall with a surface area just under 300 ha, the carbon uptake level of the Castel di Guido reforestation allows to offset the 0.04% of CO2 emissions of the city of Rome. Although the spatial coexistence of even-aged plantation blocks characterized by a range of ecological traits, is expected to ensure a more continuous carbon sequestration, being less susceptible to damage of any kind, the current lack of silvicultural management may also lead to degradation processes, by triggering e.g. fuel accumulation and, by consequence, forest fires. In this line, recommendations are provided in order to improve the ecological and functional efficiency of the investigated reforestation. The field experiment demonstrates, ultimately, the capability of the continuous forest inventory to take the pulse over several decades of tree species performance and carbon uptake levels in urban and peri-urban reforestations.  相似文献   

13.
Epidemiological studies of white pine blister rust on limber pine require a temporal component to explain variations in incidence of infection and mortality. Unfortunately, it is not known how long the pathogen has been present at various sites in the central Rocky Mountains of North America. Canker age, computed from canker length and average expansion rate, can be used to estimate infestation origin and infection frequency. To investigate relationships between canker lengths and canker ages for limber pine, we collected live white pine blister rust branch and stem cankers from three locations in Wyoming and two locations in Colorado. We quantified relationships between various measures of canker length and an estimate of canker age based on dendrochronological analysis. Total branch canker length was strongly, negatively correlated (r = ?0.79) with the first year of incomplete, annual ring formation (canker age). Mean longitudinal canker expansion rate was 8.4 cm year?1 for branch and stem cankers where branches distal to the canker were either dead or alive. Annual longitudinal canker expansion, however, was significantly greater on a stem or branch where the portion distal to the canker was alive (11.5 cm year?1) rather than dead (7.1 cm year?1). For branches or stems, proximal expansion rate (i.e., toward or down stem) averaged 4.9 cm year?1. The circumferential canker expansion rate (around branch or stem) was greater for stem cankers (8.3 cm year?1) than for branch cankers (6.2 cm year?1). Additional site and host tree covariates did not improve prediction of canker age. Two simple linear equations were developed to estimate a canker age from total length of a canker with the distal portion either alive or dead. An appropriate sample of canker ages can be used to determine how long a limber pine stand has been infested with white pine blister rust and how frequently infections have occurred.  相似文献   

14.
Carbon dioxide (CO2) flux was measured above the forest at the Fujiyoshida site on the northern slope of Mount Fuji in Japan in 2000?C2008 using an eddy covariance technique. The forest mainly consists of Japanese red pine (Pinus densiflora) and Japanese holly (Ilex pedunculosa). The 9-year average of monthly mean net ecosystem production (NEP) ranged from ?0.1?g?C?m?2?day?1 in January to 2.5?g?C?m?2?day?1 in May. The maximum net uptake was observed in May, although gross primary production (GPP) was highest in July. Variation in the leaf amount did not notably affect seasonal variation in GPP. This site was characterized by carbon uptake even in winter, if the meteorological conditions were conducive for photosynthesis and a resulting long period of carbon uptake. The 9-year averages of annual NEP, GPP, and ecosystem respiration (RE) were 388, 1,802, and 1,413?g?C?m?2?year?1, respectively. The annual NEP was lowest in 2003 and highest in 2004 over the 9?years. Year-to-year variability of NEP mainly depended on air temperature and photosynthetically active radiation in summer, and the dependence of the deviation of annual NEP on that of GPP was greater than that of RE. Long-term observational data indicated that the carbon uptake ability at the study site was at a moderate level in comparison with other temperate humid evergreen forests around the world. These data also indicated that the site had a high carbon uptake ability compared with other deciduous forests in Japan because of the duration of carbon uptake.  相似文献   

15.
Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year?1, and 0.02, 0.02, 0.03 and 0.03 year?1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha?1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.  相似文献   

16.
Forest management strongly influences the interactions between ungulates and their food resources. Different ungulate-adapted measures have been proposed in forestry to improve forage availability or to reduce browsing damage. However, the potential and feasibility of such measures are inadequately known. We studied the effects of harvest timing and slash treatment in final felling and commercial thinning on the availability of Scots pine Pinus sylvestris forage and its use by ungulates during winter in the Swedish boreal forests. Pellet group counts showed that moose (Alces alces) was the dominating species using the post-harvest stands. Under conventional slash treatment, final felling stands held on average 226 kg pine forage ha?1 after harvesting and commercial thinning stands 137 kg ha?1. Ungulate-adapted slash treatment increased the available forage biomass by 20 %, but had no significant effect on consumption of forage by ungulates. Time since harvest had the strongest effect on forage consumption; for example, under conventional slash treatment, there was a tenfold increase in consumption (3 vs. 33 kg ha?1) following final felling as exposure time increased from 2–3 to 4–5 months. Consumption was higher in thinned stands than in final felling stands for the first 3 months but not later. To increase ungulate use of the forage made available at harvest, pine-dominated stands should be harvested in the late autumn or early in the winter.  相似文献   

17.

Key message

The carbon density was not different between natural and planted forests, while the biomass carbon density was greater in natural forests than in planted forests. The difference is due primarily to the larger carbon density in the standing trees in natural forests compared to planted forests (at an average age of 50.6 and 15.7 years, respectively).

Context

Afforestation and reforestation programs might have noticeable effect on carbon stock. An integrated assessment of the forest carbon density in mountain regions is vital to evaluate the contribution of planted forests to carbon sequestration.

Aims

We compared the carbon densities and carbon stocks between natural and planted forests in the Lüliang Mountains region where large-scale afforestation and reforestation programs have been implemented. The introduced peashrubs (Caragana spp.), poplars (Populus spp.), black locust (Robinia pseudoacacia), and native Chinese pine (Pinus tabulaeformis) were the four most common species in planted forests. In contrast, the deciduous oaks (Quercus spp.), Asia white birch (Betula platyphylla), wild poplar (Populus davidiana), and Chinese pine (Pinus tabulaeformis) dominated in natural forests.

Methods

Based on the forest inventory data of 3768 sample plots, we estimated the values of carbon densities and carbon stocks of natural and planted forests, and analyzed the spatial patterns of carbon densities and the effects of various factors on carbon densities using semivariogram analysis and nested analysis of variance (nested ANOVA), respectively.

Results

The carbon density was 123.7 and 119.7 Mg ha?1 for natural and planted forests respectively. Natural and planted forests accounted for 54.8% and 45.2% of the total carbon stock over the whole region, respectively. The biomass carbon density (the above- and belowground biomass plus dead wood and litter biomass carbon density) was greater in natural forests than in planted forests (22.5 versus 13.2 Mg ha?1). The higher (lower) spatial carbon density variability of natural (planted) forests was featured with a much smaller (larger) range value of 32.7 km (102.0 km) within which a strong (moderate) spatial autocorrelation could be observed. Stand age, stand density, annual mean temperature, and annual precipitation had statistically significant effects on the carbon density of all forests in the region.

Conclusion

No significant difference was detected in the carbon densities between natural and planted forests, and planted forests have made a substantial contribution to the total carbon stock of the region due to the implementation of large-scale afforestation and reforestation programs. The spatial patterns of carbon densities were clearly different between natural and planted forests. Stand age, stand density, temperature, and precipitation were important factors influencing forest carbon density over the mountain region.
  相似文献   

18.
In this study we analyzed the effect of silviculture on carbon (C) budgets in Pinus elliottii (slash pine) plantations on the southeastern U.S. Coastal Plain. We developed a hybrid model that integrates a widely used growth and yield model for slash pine with allometric and biometric equations determined for long-term C exchange studies to simulate in situ C pools. The model used current values of forest product conversion efficiencies and forest product decay rates to calculate ex situ C pool. The model was validated from a variety of sources, accurately simulating C estimates based on multiple measurement techniques and sites. Site productivity was the major factor driving C sequestration in slash pine stands. On high productivity sites, silvicultural schemes that promote sawtimber-type products are more suitable for increasing C storage (even not taking in account the consequent economical revenues associated with sawtimber production). When rotation length was increased from 22 to 35 years on unthinned and thinned stands, respectively, we estimated net increments of 26 and 20 MgC ha−1 in average C stock of the first five rotations. Even though in situ C pool in slash pine accounts for most of this net increment, C in sawtimber products increased from 8 and 14 to 23 and 24 MgC ha−1, on unthinned and thinned stands, respectively. Thinning effects on net C stock depended on intensity and timing of intervention, mainly due to changes in diameter classes that promote higher proportion of long-lived products. Emissions associated with silvicultural activities, including transportation of logs to the mill, are small compared to the magnitude of net C sequestration, accounting for between 2.2 and 2.3% of gross C stock. This slash pine plantation C sequestration model, based on empirical and biological relationships, is appropriate for use in regional C stock assessments or for C credit verification.  相似文献   

19.
Allometric equations are routinely used in the estimation of biomass stocks for carbon accounting within forest ecosystems. However, generic equations may not reflect the growth trajectories of afforestation species that are introduced to degraded farmland characterized by water and nutrient limitations. Using sequential measurements of the height, basal diameter, and above- and belowground biomass of juvenile trees, we developed allometric equations for five woody species (Moringa oleifera Lam., Leucaena leucocephala Lam., Jatropha curcas L., Anacardium occidentale L. and Parkia biglobosa Jacq.) subjected to a gradient of water and nutrient availability in an afforestation trial on degraded cropland in the semi-arid zone of Benin, West Africa. For three of the species studied, the allometric relationships between basal diameter and biomass components (i.e. leaves, stems and roots) were described best by a simple power-law model (R2 > 0.93). The incorporation of species-specific height–diameter relationships and total height as additional predictors in the power-law function also produced reasonable estimates of biomass. Fifteen months after planting, roots accounted for 10–58% of the total biomass while the root-to-shoot ratio ranged between 0.16 and 0.73. The total biomass of the saplings ranged between 1.4 and 10.3 Mg ha?1, yielding 0.6–4.3 Mg C ha?1, far exceeding the biomass in the traditional fallow system. The rate of stem carbon sequestration measured ca. 0.62 Mg C ha?1 year?1. Overall, the allometric equations developed in this study are generally useful for assessing the standing shoot and root biomass of the five afforestation species during the juvenile growth stage and can help in reporting and verifying carbon stocks in young forests.  相似文献   

20.
Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号