首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The landing dynamics of and soil penetration by Surveyor I indicated that the lunar soil has a porosity in the range 0.35 to 0.45. Experiments with Surveyor III's surface sampler for soil mechanics show that the lunar soil is approximately incompressible (as the word is used in soil mechanics) and that it has an angle of internal friction of 35 to 37 degrees; these results likewise point to a porosity of 0.35 to 0.45 for the lunar soil. Combination of these porosity measurements with the already-determined radar reflectivity fixes limits to the dielectric constant of the grains of the lunar soil. The highest possible value is about 5.9, relative to vacuum; a more plausible value is near 4.3. Either figure is inconsistent with the idea that the lunar surface is covered by chondritic meteorites or other ultrabasic rocks. The data point to acid rocks, or possibly vesicular basalts; carbonaceous chondrites are not excluded.  相似文献   

2.
The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.  相似文献   

3.
Hydrogen has been inferred to occur in enhanced concentrations within permanently shadowed regions and, hence, the coldest areas of the lunar poles. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to detect hydrogen-bearing volatiles directly. Neutron flux measurements of the Moon's south polar region from the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) spacecraft were used to select the optimal impact site for LCROSS. LEND data show several regions where the epithermal neutron flux from the surface is suppressed, which is indicative of enhanced hydrogen content. These regions are not spatially coincident with permanently shadowed regions of the Moon. The LCROSS impact site inside the Cabeus crater demonstrates the highest hydrogen concentration in the lunar south polar region, corresponding to an estimated content of 0.5 to 4.0% water ice by weight, depending on the thickness of any overlying dry regolith layer. The distribution of hydrogen across the region is consistent with buried water ice from cometary impacts, hydrogen implantation from the solar wind, and/or other as yet unknown sources.  相似文献   

4.
An ultraviolet spectrometer aboard the Apollo 17 orbiting spacecraft attempted to measure ultraviolet emissions from the lunar atmosphere. The only emissions observed were from a transient atmosphere introduced by the lunar landing engine. The absence of atomic hydrogen implies that solar wind protons are converted to hydrogen molecules at the lunar surface.  相似文献   

5.
在地表温度反演中,大气透射率是一个关键参数。覃志豪的单窗算法依靠从探空数据中获得大气水分含量来计算大气透射率。因此在缺乏探空数据的情况下,对地表温度的反演就比较困难。目前解决这个问题的方法是利用地表相对湿度来估测大气水分含量。估算的大气水分含量是否能精确地反演地表温度的这类研究还比较少见,此研究利用冀蒙接壤区LandsatTM热红外波段数据和估算的大气水分含量,采用覃志豪的单窗算法反演冀蒙接壤区内的地表温度,并与地表实测数据进行了比较。研究结果表明,反演多伦的地表温度与实测数据相差6.29℃,反演的地表温度精度较高;研究区地表温度除了与NDVI指数相关外,还与土壤、人类活动关系密切。  相似文献   

6.
土壤气态水扩散特征初探   总被引:2,自引:0,他引:2  
在室内模拟试验的基础上,对旱地不同土层土壤气态水扩散特征进行了探讨,初步推断:①在小于最大吸湿量时,土壤中也存在非气态的水分运移,但气态的水分扩散一般是主要机制;②粘粒含量较高、比表面积较大的土壤中非气态水分扩散所占比例较大;③温度升高,扩散系数增大,④扩散也明显存在滞后现象;⑤对供试土样,在相对水气压约40%的含水量下,气态水分扩散系数达最大值。  相似文献   

7.
The rare gas analysis of the lunar surface has lead to important conclusions concerning the moon. The large amounts of rare gases found in the lunar soil and breccia indicate that the solar atmosphere is trapped in the lunar soil as no other source of such large amounts of gas is known. The cosmogenic products indicate that the exposure ages of the 17 lunar rocks measured vary from 20 to 400 million years with some grouping of the ages. The most striking feature is the old potassium-argon age which for the 14 rocks analyzed varies from 2.5 to 3.8 billion years. It is concluded that Mare Tranquillitatis crystallized about 4 billion years ago from a molten state produced by a large meteorite impact or volcanic flow.  相似文献   

8.
Lunar anorthosites   总被引:2,自引:0,他引:2  
Sixty-one of 1676 lunar rock fragments examined were found to be anorthosites, markedly different in composition, color, and specific gravity from mare basalts and soil breccias. Compositional similiarity to Tycho ejecta analyzed by Surveyor 7 suggests that the anorthosites are samples of highlands material, thrown to Tranquillity Base by cratering events. A lunar structural model is proposed in which a 25-kilometer anorthosite crust, produced by magmatic fractionation, floats on denser gabbro. Where early major impacts punched through the crust, basaltic lava welled up to equilibrium surface levels and solidified (maria). Mascons are discussed in this context.  相似文献   

9.
Spectra of the region just above the bright limb of the Moon show weak emission features that are attributed to resonant scattering of sunlight from sodium and potassium vapor in the lunar atmosphere. The maximum omnidirectional emission flux above the bright limb is 3.8 +/- 0.4 kilorayleighs for sodium and 1.8 +/- 0.4 kiloray-leighs for potassium. The zenith column densities above the subsolar point are estimated to be 8 +/- 3 x 10(8) atoms cm(-2) for sodium 1.4 +/- 0.3 x 10(8) atoms cm(-2) for potassium. Corresponding surface densities are 67 +/- 12 atoms cm(-3) and 15 +/- 3 atoms cm(-3), respectively. The scale height for the sodium atmosphere is 120 +/- 42 kilometers, and for potassium 90 +/- 20 kilometers, which implies that the effective temperature of the sodium and potassium is close to the lunar surface temperature. The sodium density at the south polar region was found to be similar to that at the subsolar point, indicating wide-spread distribution of sodium vapor over the lunar surface. The ratio of the density of sodium to the density of potassium is (6 +/- 3) to 1, which is close to the sodium to potassium ratio in the lunar surface, suggesting that the atmosphere originates from the vaporization of surface minerals.  相似文献   

10.
Lunar rock 66095 contains a hydrated iron oxide and has an unusual amount of water for a lunar rock (140 to 750 parts per million), 90 percent of which is released below 690 degrees C. The deltaof water released at these low temperatures varies from -75 to -140 per mil relative to standard mean ocean water (SMOW). The small amount of water released between 690 degrees and 1300 degrees C has a delta of about -175 +/-25 per mil SMOW. These delta values are not unusual for terrestrial water. The delta(18)O of water extracted from 110 degrees to 400 degrees C has a value of +5+/- I per mil SMOW, similar to the value for lunar silicates from rock 66095 and different from the value of -4 to -22 per mil found for samples of terrestrial rust including samples of rusted meteoritic iron. The amount of carbon varies from 11 to 59 parts per million with a delta(13)C from -20 to -30 per mil relative to Pee Dee belemnite. Only very small amounts of reduced species (such as hydrogen, carbon monoxide, and methane) were found, in contrast to the analyses of other lunar rocks. Although it is possible that most of the water in the iron oxide (goethite) may be terrestrial in origin or may have exchanged with terrestrial water during sample return and handling, evidence presented herein suggests that this did not happen and that some lunar water may have a deltaD that is indistinguishable from that of terrestrial water.  相似文献   

11.
Hydrolyzates of aqueous extracts of Apollo 11 fines, an Apollo 12 trench sample, and an Apollo 12 surface sample have been analyzed on an ultrasensitive amino acid analyzer. The total content of amino acids recovered ranged from 20 to 70 parts per billion of lunar soil. Amino acids are not recovered by the direct hydrolysis of lunar fines, presumably because of decomposition in the presence of the large excess of lunar mineral. As judged by retention time, glycine is the dominant amino acid found; alanine is secondarily present in each case in the profile. Only a few amino acids have been recorded in each analysis. The pattern is relatively consistent in the samples from the three locations; the pattern from either hydrolyzed or unhydrolyzed extracts differs markedly from that of hydrolyzed or unhydrolyzed handprints. The evidence is not consistent with contamination of the kind expected by many investigators.  相似文献   

12.
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.  相似文献   

13.
Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.  相似文献   

14.
Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.  相似文献   

15.
Lunar rivers     
Mature meanders in lunar sinuous rills strongly suggests that the rills are features of surface erosion by water. Such erosion could occur under a pressurizing ice cover in the absence of a lunar atmosphere. Water, outgassed from the lunar interior and trapped beneath a layer of permafrost, could be released by a meteoritic impact and overflow the crater to form an ice-covered river. A sinuous rill could be eroded in about 100 years.  相似文献   

16.
大豆生物解离纤维素是生物解离技术提取大豆油脂过程中产生的不溶性纤维素,合理利用该纤维素有利于生物解离技术推广。试验以大豆生物解离纤维素为基材,添加丙三醇后利用延流法制备可食性膜,测定不同丙三醇添加量下可食性膜拉伸强度、断裂伸长率、水蒸气透过率、玻璃化转变温度、颜色及亮度、水溶性。结果表明,丙三醇对可食性膜多种特性产生影响。丙三醇添加量增加,可食性膜断裂伸长率、水蒸气通过率、亮度及水溶性升高,拉伸强度及玻璃化转变温度降低。利用扫描电子显微镜观察可食性膜表面微观结构发现,添加丙三醇可提高可食性膜表面致密性与均一性;红外吸收光谱测定结果表明,丙三醇与大豆生物解离纤维素间产生氢键作用,在成膜过程中破坏纤维素分子间酯键,削弱纤维素分子间作用力。研究为大豆生物解离纤维素可食性膜的生产提供理论依据。  相似文献   

17.
Beryllium-10 (10Be) in excess of that expected from in situ cosmic ray spallation reactions is present in lunar surface soil 78481; its presence was revealed with a sequential leaching technique. This excess 10Be, representing only 0.7 to 1.1% of the total 10Be inventory, is associated with surface layers (<1 micrometer) of the mineral grains composing 78481. This excess 10Be and its association with surficial layers corresponds to (1.9 +/- 0.8) x 10(8) atoms per square centimeter, requiring a 10Be implantation rate of (2.9 +/- 1.2) x 10(-6) atoms per square centimeter per second on the surface of the Moon. The most likely site for the production of this excess (10)Be is the Sun's atmosphere. The 10Be is entrained into the solar wind and transported to the lunar surface.  相似文献   

18.
The spectral reflectivity (0.30 to 2.50 microns) of several lunar areas was measured with ground-based telescopes. A narrow absorption band centered at 0.95 micron was revealed for the first time. No other absorption bands appear in the spectrum. The reflectivity continues to rise at longer wavelengths throughout the spectral region studied. A comparison of the telescope measurements of an area 15 kilometers in diameter that includes Tranquillity Base with laboratory measurements of Apollo 11 soil samples reveals remarkable agreement, an indication that properties determined for fairly large lunar areas are relevant to local conditions. The spectra are interpretable in terms of surface mineralogy. The absorption band varies in both depth and shape and the overall slope of the curve changes with lunar area, an indication of differences in the composition and opacity of surface material. However, the lack of variety in the band position suggests there are no major differences (say, from mostly pyroxenes to mostly olivines) in the mineralogy at those sites studied.  相似文献   

19.
We report the direct detection of solid water ice deposits exposed on the surface of comet 9P/Tempel 1, as observed by the Deep Impact mission. Three anomalously colored areas are shown to include water ice on the basis of their near-infrared spectra, which include diagnostic water ice absorptions at wavelengths of 1.5 and 2.0 micrometers. These absorptions are well modeled as a mixture of nearby non-ice regions and 3 to 6% water ice particles 10 to 50 micrometers in diameter. These particle sizes are larger than those ejected during the impact experiment, which suggests that the surface deposits are loose aggregates. The total area of exposed water ice is substantially less than that required to support the observed ambient outgassing from the comet, which likely has additional source regions below the surface.  相似文献   

20.
Radio astronomical observations of Uranus show that the radio emission spectrum is evolving in time. Ammonia vapor must be depleted in the Uranian atmosphere as Gulkis and his co-workers previously suggested. Since 1965, ammonia either has been decreasing in time or is a decreasing function of latitude, or both, provided that the radio emission is atmospheric in origin. If Uranus has an observable low-emissivity "surface," these trends may be reversed. The microwave observations made in 1965, at the time when the spin axis of Uranus was nearly perpendicular to the sun-Uranus line, are consistent with an atmospheric opacity profile that would be produced by saturated ammonia vapor in a predominantly hydrogen atmosphere. At the present time, when the spin axis of Uranus is nearly aligned with the sun-Uranus line, the measurements require an opacity that would be produced by saturated water vapor. A large thermal gradient between the pole and equator is ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号