首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thomas RH 《Science (New York, N.Y.)》1979,205(4412):1257-1258
Retreat of the margins of the West Antarctic ice sheet associated with rising sea level during the last 15,000 years is the main cause for the thinning of the ice sheet by approximately 300 meters. The West Antarctic ice sheet during the late Wisconsin was at least 30 percent wider than it is today, and Holocene retreat of its margins has added about 6 meters to the world sea level.  相似文献   

2.
Aircraft laser-altimeter surveys over southern Greenland in 1993 and 1998 show three areas of thickening by more than 10 centimeters per year in the southern part of the region and large areas of thinning, particularly in the east. Above 2000 meters elevation the ice sheet is in balance but thinning predominates at lower elevations, with rates exceeding 1 meter per year on east coast outlet glaciers. These high thinning rates occur at different latitudes and at elevations up to 1500 meters, which suggests that they are caused by increased rates of creep thinning rather than by excessive melting. Taken as a whole, the surveyed region is in negative balance.  相似文献   

3.
The Antarctic surge theory of Pleistocene glaciation is reexamined in the context of thermal convection theory applied to the Antarctic ice sheet. The ice sheet surges when a water layer at the base of the ice sheet reaches the edge of the ice sheet over broad fronts and has a thickness sufficient to drown the projections from the bed that most strongly hinder basal ice flow. Frictional heat from convection flow promotes basal melting, and, as the ice sheet grows to the continental shelf of Antarctica, a surge of the ice sheet appears likely.  相似文献   

4.
The Pine Island Glacier (PIG) transports 69 cubic kilometers of ice each year from approximately 10% of the West Antarctic Ice Sheet (WAIS). It is possible that a retreat of the PIG may accelerate ice discharge from the WAIS interior. Satellite altimetry and interferometry show that the grounded PIG thinned by up to 1.6 meters per year between 1992 and 1999, affecting 150 kilometers of the inland glacier. The thinning cannot be explained by short-term variability in accumulation and must result from glacier dynamics.  相似文献   

5.
6.
Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.  相似文献   

7.
The portion of the West Antarctic ice sheet that flows into the Ross Sea is thinning in some places and thickening in others. These changes are not caused by any current climatic change, but by the combination of a delayed response to the end of the last global glacial cycle and an internal instability. The near-future impact of the ice sheet on global sea level is largely due to processes internal to the movement of the ice sheet, and not so much to the threat of a possible greenhouse warming. Thus the near-term future of the ice sheet is already determined. However, too little of the ice sheet has been surveyed to predict its overall future behavior.  相似文献   

8.
Measurements of ice-sheet elevation change by satellite altimetry show that the Greenland surface elevation south of 72 degrees north latitude is increasing. The vertical velocity of the surface is 0.20 +/- 0.06 meters per year from measured changes in surface elevations at 5906 intersections between Geosat paths in 1985 and Seasat in 1978, and 0.28 +/- 0.02 meters per year from 256,694 intersections of Geosat paths during a 548-day period of 1985 to 1986.  相似文献   

9.
Zwally HJ 《Science (New York, N.Y.)》1989,246(4937):1589-1591
An observed 0.23 m/year thickening of the Greenland ice sheet indicates a 25% to 45% excess ice accumulation over the amount required to balance the outward ice flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (< 100 years). If there is a similar imbalance in the northern 60% of the ice-sheet area, the depletion is 0.35 to 0.7 mm/year. Increasing ice thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.  相似文献   

10.
Ice flow of the Antarctic ice sheet   总被引:2,自引:0,他引:2  
We present a reference, comprehensive, high-resolution, digital mosaic of ice motion in Antarctica assembled from multiple satellite interferometric synthetic-aperture radar data acquired during the International Polar Year 2007 to 2009. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland over the entire continent. This view of ice sheet motion emphasizes the importance of basal-slip-dominated tributary flow over deformation-dominated ice sheet flow, redefines our understanding of ice sheet dynamics, and has far-reaching implications for the reconstruction and prediction of ice sheet evolution.  相似文献   

11.
Two ice cores from the col of Huascarán in the north-central Andes of Peru contain a paleoclimatic history extending well into the Wisconsinan (Würm) Glacial Stage and include evidence of the Younger Dryas cool phase. Glacial stage conditions at high elevations in the tropics appear to have been as much as 8 degrees to 12 degrees C cooler than today, the atmosphere contained about 200 times as much dust, and the Amazon Basin forest cover may have been much less extensive. Differences in both the oxygen isotope ratio zeta(18)O (8 per mil) and the deuterium excess (4.5 per mil) from the Late Glacial Stage to the Holocene are comparable with polar ice core records. These data imply that the tropical Atlantic was possibly 5 degrees to 6 degrees C cooler during the Late Glacial Stage, that the climate was warmest from 8400 to 5200 years before present, and that it cooled gradually, culminating with the Little Ice Age (200 to 500 years before present). A strong warming has dominated the last two centuries.  相似文献   

12.
Six ice cores from Kilimanjaro provide an approximately 11.7-thousand-year record of Holocene climate and environmental variability for eastern equatorial Africa, including three periods of abrupt climate change: approximately 8.3, approximately 5.2, and approximately 4 thousand years ago (ka). The latter is coincident with the "First Dark Age," the period of the greatest historically recorded drought in tropical Africa. Variable deposition of F- and Na+ during the African Humid Period suggests rapidly fluctuating lake levels between approximately 11.7 and 4 ka. Over the 20th century, the areal extent of Kilimanjaro's ice fields has decreased approximately 80%, and if current climatological conditions persist, the remaining ice fields are likely to disappear between 2015 and 2020.  相似文献   

13.
The Antarctic ice sheet at Byrd Station has been core-drilled to bedrock; the vertical thickness of the ice is 2164 meters. Liquid water-indicative of pressure melting-was encountered at the bed. Heat flow through the base of the ice sheet is estimated at 1.8 microcalories per square centimeter per second. The minimum temperature was -28.8 degrees C at 800 meters; maximum ice density, 0.9206 at 1000 meters. Core studies reveal the existence of a chemically pure, structurally stratified sheet comprising bubbly ice to 900 meters that transforms to bubble-free deformed ice, with substantially vertically orientated c-axis structure, below 1200 meters. Below 1800 meters the deformed ice structure gives way to large annealed crystals. Several thin layers of dirt between 1300 and 1700 meters are tentatively identified as volcanic ash, and horizontally banded debris, including fragments of granite, is present in the basal ice.  相似文献   

14.
Past temperatures directly from the greenland ice sheet   总被引:3,自引:0,他引:3  
A Monte Carlo inverse method has been used on the temperature profiles measured down through the Greenland Ice Core Project (GRIP) borehole, at the summit of the Greenland Ice Sheet, and the Dye 3 borehole 865 kilometers farther south. The result is a 50, 000-year-long temperature history at GRIP and a 7000-year history at Dye 3. The Last Glacial Maximum, the Climatic Optimum, the Medieval Warmth, the Little Ice Age, and a warm period at 1930 A.D. are resolved from the GRIP reconstruction with the amplitudes -23 kelvin, +2.5 kelvin, +1 kelvin, -1 kelvin, and +0.5 kelvin, respectively. The Dye 3 temperature is similar to the GRIP history but has an amplitude 1.5 times larger, indicating higher climatic variability there. The calculated terrestrial heat flow density from the GRIP inversion is 51.3 milliwatts per square meter.  相似文献   

15.
Airborne radar images of part of the Greenland ice sheet reveal icy terrain whose radar properties are unique among radar-studied terrestrial surfaces but resemble those of Jupiter's icy Galilean satellites. The 5.6- and 24-centimeter-wavelength echoes from the Greenland percolation zone, like the 3.5- and 13-centimeter-wavelength echoes from the icy satellites, are extremely intense and have anomalous circular and linear polarization ratios. However, the detailed subsurface configurations of the Galilean satellite regoliths, where heterogeneities are the product of prolonged meteoroid bombardment, are unlikely to resemble that within the Greenland percolation zone, where heterogeneities are the product of seasonal melting and refreezing.  相似文献   

16.
17.
Some glacial sediment samples recovered from beneath the West Antarctic ice sheet at ice stream B contain Quaternary diatoms and up to 10(8) atoms of beryllium-10 per gram. Other samples contain no Quaternary diatoms and only background levels of beryllium-10 (less than 10(6) atoms per gram). The occurrence of young diatoms and high concentrations of beryllium-10 beneath grounded ice indicates that the Ross Embayment was an open marine environment after a late Pleistocene collapse of the marine ice sheet.  相似文献   

18.
Seasat and Geosat satellite altimeter measurements for the Greenland ice sheet (south of 72 degreesN latitude) show that surface elevations above 2000 meters increased at an average rate of only 1. 5 +/- 0.5 centimeters per year from 1978 to 1988. In contrast, elevation changes varied regionally from -15 to +18 centimeters per year, seasonally by +/-15 centimeters, and interannually by +/-8 centimeters. The average growth rate is too small to determine if the Greenland ice sheet is undergoing a long-term change due to a warmer polar climate.  相似文献   

19.
New data support the contention that the mercury content of Greenland glacial ices has not increased dramatically in recent years but rather is distributed nonhomogeneously through the ice sheet.  相似文献   

20.
In the combustion of fossil fuels, selenium is mobilized in the atmosphere to a much lesser extent than is sulfur. This difference is ascribed to the chemical behavior of their respective tetravalent oxides. The ratio of selenium to sulfur in glacial ice is characteristic of terrestrial matter, and these elements may find their way to ice sheets by the formation of volatile compounds in biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号