首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 为了确定不同坡度、土地利用类型及降水参数对水土流失的影响,通过黄土丘陵区坡耕地、草地的3个坡度(10°,15°和20°)小区连续14年的径流、侵蚀观测数据,分析不同坡度、土地利用模式和降水变化的水土流失分异。试验结果表明:1)坡耕地水土流失量随坡度的升高而增加,20°小区显著大于10°和15°小区;草坡地小区的年水土流失量也随坡度变化,不同坡度小区之间没有显著性差异。2)坡耕地与草地的水土流失量具有显著性差异,坡耕地年均径流量和侵蚀量分别为草地的1.8倍和13.9倍,与草地比较,坡耕地明显地增加水土流失风险。3)不同土地类型水土流失模数受年降水变化的影响效应不同。坡耕地水土流失量受少数强降水控制,年径流量、侵蚀量与年降水量、产流降水量之间无显著性相关;草地的年径流量、侵蚀量分别与年产流降水量、年降水量显著相关。4)坡耕地的水土流失受降水量(P)、最大30min降水强度(I30)和综合降水指数(PI30)的显著影响,但各因素的决定系数不同,影响系数次序为PI30>I30>P。草地的径流与降水变量关系与坡耕地一致,但次侵蚀量仅与I30变化的显著性影响,而与P、PI30无显著性相关。草地的水土流失量受坡度差异以及降水变化的影响较弱,表明草地能够有效地控制水土流失,对荒坡草地采取保护措施以促进植被、土壤的进展恢复。坡耕地水土流失变化与坡度、降水变量的关系更为直接,通过降低坡度、休耕和免耕等耕作模式,减少土壤扰动和增加地面植被盖度,可有效减少水土流失。  相似文献   

2.
Rainfall erosivity in Cape Verde   总被引:1,自引:0,他引:1  
This paper presents rainfall erosivity values derived from a 7-year rainfall recording in the Cape Verde islands, Central East Atlantic. The data set consisted of 63 storm events, continuously registered in 15-min intervals. Kinetic energy of storm rainfall corresponded to established values in other tropical locations. Two algorithms to estimate erosivity, expressed as energy times intensity, using daily rainfall or storm depth and duration as predictor variables are derived. Erosivity of design storms for various return frequencies is calculated for some locations in Santiago island. An indicative range for the annual rainfall erosion R-index is given. Data analysis further showed the extreme seasonal concentration of precipitation and erosivity at this location, with a very high fraction of total annual erosivity contained in the annual maximum 24-h rainfall.  相似文献   

3.
Pastoral land use in New Zealand's North Island hill terrain has led to high rates of rainstorm-induced landslide erosion higher than existed under the indigenous forest regime, with consequent soil productivity declines in the long term. To assist extrapolation of research results to other areas, and to shed light on long-term erosion risks, a simple model was developed that simulates the evolution of hillslope soil productivity, taking into account the effect of slope, rainstorm magnitude–frequency relations and soil recovery rates. Risks are evaluated by Monte Carlo simulation, and reflect parameter uncertainty as well as the natural randomness associated with climatic events. A sensitivity analysis showed that landslide risk was most affected by the rainfall threshold for landsliding, the mean of the extreme value distribution for annual maximum storm rainfall, and the maximum degree of recovery of pasture productivity following landsliding. Simulations suggest productivity stabilizes at a reduced level well before all steep terrain is affected by landsliding, and that subsequent expected landslide-induced productivity declines are too slow to provide sufficient economic motivation for measures to prevent landslide damage. A refined model showed that long-term average rates of productivity decline are sensitive to changes in recovery rates resulting from progressive removal of the soil resource. Charts summarizing simulation results can be used to estimate long-term productivity declines. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
《Soil Use and Management》2018,34(3):388-403
Increased soil erosion, pressure on agricultural land, and climate change highlight the need for new management methods to mitigate soil loss. Management strategies should utilize comparable data sets of long‐term soil erosion monitoring across multiple environments. Adaptive soil erosion management in regions with intense precipitation requires an understanding of inter‐annual variability in sediment yield (SY ) at regional scales. Here, a novel approach is proposed for analysing regional SY . We aimed to (i) investigate factors controlling inter‐ and intra‐annual SY , (ii) combine seasonality and time compression analyses to explore SY variability and (iii) discuss management implications for different Mediterranean environments. Continuous SY measurements totalling 104 years for eight small catchments were used to describe SY variability, which ranged from 0 to 271 t/ha/year and 0 to 116 t/ha/month. Maximum SY occurs in spring to summer for catchments with oceanic climates, while semi‐arid or dry summer climates experience SY minimums. We identified three time compression patterns at each time scale. Time compression was most intense for catchments with minimum SY in spring to summer. Low time compression was linked to very high soil loss, low run‐off and sediment production thresholds, and high connectivity. Reforestation, grassland and terracing changed SY magnitudes and time compression, but failed to reduce SY for large storm events. Periods with a high probability of high SY were identified using a combination of intra‐annual SY variability, seasonality analysis, and time compression analysis. Focusing management practices on monthly flow events, which account for the majority of SY , will optimise returns in Mediterranean catchments.  相似文献   

5.
《CATENA》2002,50(1):1-16
Estimating catchment scale soil loss based on rainfall simulators is often hampered by the difficulty to scale up simulator results. Our objective was to develop and test a method for estimating catchment scale soil loss based on observed rainfall using a variable intensity rainfall simulator in an erosion-sensitive catchment in semiarid Tunisia. A 7-year period, 1992–1999, with observed sedimentation amounts in a downstream reservoir was chosen to test a methodology. The methodology was based on (1) energy adjustment for the used simulator due to the difference in kinetic energy of simulated and natural rainfall at equal intensities and (2) upscaling of simulated erosion in which rill erosion was estimated by adjusting the difference between slope lengths for the plots versus the catchment after onset of runoff. The comparison between calculated soil loss from rainfall simulator experiments and observed sedimentation in the downstream reservoir displayed good overall results. Calculated soil loss was found to be about 96%, 36%, and 80% for different observed subperiods, respectively. The observed low value for the second period was probably due an exceptionally intense rainfall event during this period, which appears to have led to gully erosion, soil slide, and riverbank collapse. Therefore, during this event, siltation in the reservoir may essentially be due to unaccounted erosion processes such as gully erosion. Overall, however, it appears that plot-scale variable intensity rainfall simulators can rather successfully estimate catchment scale soil losses.  相似文献   

6.
Due to rainfall variation and poor land cover, water erosion in the loess hilly area is severe and experiences high temporal fluctuations, which increase the difficulties of erosion quantification, prediction and control. In this study, 15 runoff plots were implemented in Dingxi, a typical loess hilly area of Gansu Province since 1986. Three typical years representing WY (wet year), NY (normal year) and DY (drought year) were firstly filtered based on the consecutive rainfall-erosion data and an aridity index. Then, water erosion dynamics involving five land uses (cropland, alfalfa, scrubland, woodland and grassland) in the three typical years were analyzed. The following results were found. Firstly, the most severe annual erosion rates did not appear in WY, but in DY. Moreover, the rates in DY were far higher than those in NY and WY. Secondly, although total rain depth and number of events were in the order of WY > NY > DY, mean maximal intensity of erosive rainfall however, was in the order of DY > NY > WY. This finding is important for erosion control. Namely, we cannot judge water erosion degree just from annual rainfall. More attention should be paid to the specific rainfall variables and distributions. Thirdly, different land uses played an important role with sea buckthorn reducing water erosion in contrast to spring wheat cultivated on steep slopes. Lastly, regardless of different drought-level years, only a few number of events with high intensities were responsible for the majority of annual soil and water loss.  相似文献   

7.
黄土丘陵区不同降雨格局下土地利用的水土流失效应   总被引:5,自引:3,他引:5  
研究不同类型降雨事件下土地利用/覆被对水土流失过程的影响,对于科学指导植被建设和控制水土流失具有重要意义。基于14a径流小区观测数据,依据降雨量.降雨历时和最大30min雨强3个指标。利用快速聚类的方法将定西市安家沟内产流性降雨事件划分为3种格局。总体而言,降雨格局2为雨量集中、雨强很高而历时较短的降雨事件的集合;降雨格局3为雨量分散、雨强小而历时很长的一类降雨事件的集合;而降雨格局1则为雨强、历时等特征值都介于格局3和格局2之间的降雨事件的集合体。在此基础上,着重研究了5种土地利用类型在不同降雨格局下的径流侵蚀规律。(1)从静态观点来看,5种土地利用类型抵抗径流侵蚀的能力依次为沙棘〉荒草〉油松〉苜蓿〉小麦。苜蓿地的土壤侵蚀严重。可能跟人为干扰破坏和苜蓿自身生长习性有关。(2)3种降雨格局中,以降雨格局2下各土地利用类型的径流侵蚀最为严重,降雨格局1次之,降雨格局3最弱。即雨量集中、雨强很高而历时较短的降雨类型是影响该地区水土流失的主导因素。(3)多年生植被(如沙棘,油松等)的径流侵蚀有随生长年数增长而减弱的趋势,以生长初期最为严重,随后逐渐减弱并稳定在一个较低的水平上。因而认为,不同土地利用类型下的径流侵蚀不仅取决于该植被类型,更重要的是决定于该植被所处的生长发育阶段。  相似文献   

8.
《Geoderma》2002,105(1-2):125-140
This paper presents a method that can be used to quantify and map soil losses at field scale produced by extreme rainfall events. The amounts of sediment produced by overland flow and concentrated overland flow (inter-rill, rill and gully erosion) at the agricultural plot scale are evaluated from elevation differences computed from very high resolution digital elevation models (DEMs), from before and just after an extreme rainfall event. Geographical Information Systems (GIS) techniques are used to analyse the multi-temporal spatial data. The research case study presented makes reference to a mechanised vineyard plot located in the Alt Penedès–Anoia region (Catalonia, Spain). The rainfall event, which occurred in June 2000, registered 215 mm, 205 mm of which fell in 2 h 15 min. The average intensity of the downpour was 91.8 mm h−1, with a maximum intensity in 30-min periods of up to 170 mm h−1. The erosivity index R reached a value of 11,756 MJ ha−2 mm h−1, 10 times greater than the annual value for this area. The volume of soil detached by the rainfall, as measured by the proposed method, was 828±19 m3. About 57% of those materials were deposited in other parts within the same plot. The balance was negative, with a total 352±36 m3 of soil loss from the plot, which represented a rate of 207±21 Mg ha−1. The paper analyses the characteristics of the rainfall event in relation to historical data and discusses the proposed method for soil erosion mapping at plot scales in relation to other measurement methods.  相似文献   

9.
《CATENA》1998,32(1):15-22
Evaluation of various soil erosion models with large data sets have consistently shown that these models tend to over-predict soil erosion for small measured values, and under-predict soil erosion for larger measured values. This trend appears to be consistent regardless of whether the soil erosion value of interest is for individual storms, annual totals, or average annual soil losses, and regardless of whether the model is empirical or physically based. The hypothesis presented herein is that this phenomenon is not necessarily associated with bias in model predictions as a function of treatment, but rather with limitations in representing the random component of the measured data within treatments (i.e., between replicates) with a deterministic model. A simple example is presented, showing how even a `perfect' deterministic soil erosion model exhibits bias relative to small and large measured erosion rates. The concept is further tested and verified on a set of 3007 measured soil erosion data pairs from storms on natural rainfall and run-off plots using the best possible, unbiased, real-world model, i.e., the physical model represented by replicated plots. The results of this study indicate that the commonly observed bias, in erosion prediction models relative to over-prediction of small and under-prediction of large measured erosion rates on individual data points, is normal and expected if the model is accurately predicting erosion rates as a function of environmental conditions, i.e., treatments.  相似文献   

10.
研究紫色土区坡耕地玉米全生育期细沟侵蚀阶段水土及氮素流失规律,以期为研究区氮素流失有效防控提供科学依据。采用人工模拟降雨与野外径流小区相结合的方法,开展降雨强度为1.5mm/min条件下玉米全生育期细沟侵蚀阶段地表径流、壤中流和侵蚀泥沙中氮素流失特征的研究。结果表明:细沟侵蚀阶段,玉米各生育期地表径流量、壤中流量和侵蚀产沙量总体表现为随降雨时间延长呈先增加后平稳的变化趋势。地表径流中总氮、可溶性总氮、硝态氮和侵蚀泥沙中总氮流失量总体呈现先增加后平稳的趋势,而地表径流中铵态氮流失量变化趋势在降雨前期呈现波动性变化,降雨后期逐渐平稳。壤中流中总氮、可溶性总氮、硝态氮、铵态氮流失量则随着降雨时间延长呈现平稳的变化趋势。细沟侵蚀阶段地表径流中氮素流失总量在玉米苗期最大,为628.77mg/m2;壤中流中氮素流失总量在拔节期和抽雄期最大;侵蚀泥沙中氮素流失总量在苗期最大,为144.95mg/m2。壤中流为氮素流失主要途径,硝态氮为氮素流失主要形态。  相似文献   

11.
北约旦地区降水侵蚀因子的近似估算研究   总被引:2,自引:0,他引:2  
Despite being in arid and semi-arid areas, erosion is largely a result of infrequent but heavy rainfall events; therefore, rainfall erosivity data can be used as an indicator of potential erosion risks. The purpose of this study was to investigate the spatial distribution of annual rainfall erosivity in North Jordan. A simplified procedure was used to correlate erosivity factor R values in both the universal soil loss equation (USLE) and the revised universal soil loss equation (RUSLE) with annual rainfall amount or modified Fournier index (Fmod). Pluviometric data recorded at 18 weather stations covering North Jordan were used to predict R values. The annual values of erosivity ranged between 86-779 MJ mm ha-1 h-1 year-1. The northwest regions of Jordan showed the highest annual erosivity values, while the northeastern regions showed the lowest annual erosivity values.  相似文献   

12.
[目的]揭示泥石流小流域降雨和土地利用对流域内坡面侵蚀的影响和作用,为泥石流的生态治理提供科学依据。[方法]以白龙江流域一级支沟——甘家沟泥石流小流域为研究区,基于该流域已建的5个径流小区(裸地、坡耕地、草地、土坎梯田、经济林地)连续5年的观测资料,利用K-均值聚类法,选择降雨量(P)、降雨历时(D)和最大30 min降雨强度(I30)3个降雨指标,将该流域46次侵蚀性降雨事件划分为3类雨型(Ⅰ型、Ⅱ型、Ⅲ型),以平均径流系数和平均土壤流失量为主要指标,定量化分析了不同降雨雨型和土地利用类型对坡面产流产沙的影响和作用。[结果]径流和土壤流失对降雨的响应存在差异,平均径流系数为Ⅰ型降雨最高,其次为Ⅲ型和Ⅱ型降雨;土壤流失量为Ⅱ型降雨>Ⅰ型降雨>Ⅲ型降雨。最大30 min降雨强度与5种土地利用类型的径流系数和土壤流失量的正相关性最高,其次为降雨量、降雨历时。5种土地利用类型的平均径流系数为裸地>经济林地>坡耕地>草地>土坎梯田,土壤流失量为裸地>坡耕地>经济林地>草地>土坎梯田。降雨和土地利用相互作用下,径流...  相似文献   

13.
This paper examines the soil degradation processes that are threatening the productivity of the mechanized annual cropping areas in the Santa Cruz lowlands of tropical eastern Bolivia. The dominant process is that of machinery-induced and natural compaction, which has resulted in an estimated 50 per cent of the soils in the Central Zone being moderately to severely compacted, causing serious root restriction and the loss of both transmission and water-storage pores. Degradation has made the soils increasingly susceptible to moisture stress due to the combined effect of (i) restricted rooting as a result of compaction and the hardsetting characteristics of the soils, (ii) reduced rainfall infiltration due to the loss of transmission pores and surface crusting, and (iii) a decrease in available soil moisture caused by the loss of storage pores, the incorporation of wind-blown fine sand deposits, and soil organic matter losses due to accelerated decomposition rates. The loss of transmission pores has also made the soils more prone to waterlogging in periods of high rainfall. The degradation tendencies of these soils are exacerbated by the greater variability of seasonal rainfall during the last 20 years that has led to a greater frequency or extremely high or extremely low rainfall events than hitherto.  相似文献   

14.
降雨类型对褐土横垄坡面土壤侵蚀过程的影响   总被引:8,自引:2,他引:8  
安娟  于妍  吴元芝 《农业工程学报》2017,33(24):150-156
雨型是影响土壤侵蚀过程的重要因子之一,而影响效应与耕作措施密切相关。目前,雨型对横垄坡面土壤侵蚀过程的影响机制尚不清楚。该文以褐土横垄坡面为研究对象,设计了平均雨强和降雨量相同的4种雨型(增加、减弱、增加-减弱和减弱-增加型),采用可同时调节垄向和坡面坡度的土槽进行模拟降雨,研究各个雨型下不同侵蚀阶段的产流产沙特征。结果表明:雨型间的径流量和侵蚀量在细沟间和细沟侵蚀阶段均差异显著,且差异在细沟阶段体现的更为明显。雨型间径流量的大小顺序为增加-减弱型减弱型减弱-增加型增加型,侵蚀量则为增加-减弱型减弱-增加型减弱型增加型。给定雨强下(30、60或90 mm/h),径流量、径流贡献率和侵蚀量贡献率均随降雨过程中雨强发生时序的延迟而增加,而单位径流侵蚀量呈相反趋势;雨型间给定雨强同一发生时序下的径流量和侵蚀量及其它们对总径流量和总侵蚀量的贡献率均差异显著。4种雨型下,幂函数均能很好的描述细沟间和细沟侵蚀阶段内产沙率与径流率间的关系,且方程中的指数均低于2,但雨型间幂函数方程中的指数存在明显差异。以上研究结果有助于深入理解褐土垄作系统下的土壤侵蚀机理,并为横坡垄作的合理利用提供科学指导。  相似文献   

15.
黄丘一区坡面水土流失规律研究   总被引:7,自引:0,他引:7  
<正> 为了探索黄丘—区坡面水土流失规律,寻求水土流失与其影响因素之间的关系,为合理利用水沙资源、水土保持规划与措施设计提供科学依据,我们进行了该项试验研究。 一、径流场布设概况 1954~1958年,我们在绥德辛店沟布设径流小区,由9个逐步发展到66个;1958~1961年,径流小区缩减为8个;1962~1964年,在韭园沟内王茂庄大咀峁布设自然地貌全坡长径  相似文献   

16.
紫色丘陵区侵蚀性降雨与降雨侵蚀力特征   总被引:8,自引:0,他引:8  
降雨侵蚀力(R值)的空间分布反映了区域气候对土壤侵蚀的作用。利用四川盆地紫色丘陵区多年实测降雨资料,应用频率分析法,推求该地区侵蚀性降雨的一般雨量标准,揭示该地区侵蚀性降雨及其侵蚀特征,进而运用降雨侵蚀力日降雨量计算方法,分析紫色丘陵区降雨侵蚀力时空分布特征。结果表明:1)紫色丘陵区顺坡休闲农耕地的侵蚀性降雨的一般雨量标准为11.3mm;2)紫色丘陵区多年平均总降雨量中有60%以上属于侵蚀性降雨,侵蚀性降雨主要集中于5—9月,其中7、8月年均侵蚀性降雨量和土壤侵蚀量最大,空间分布上表现为丘陵区边缘地区大于中部地区;3)紫色丘陵区年均R值介于5000~6500MJ/(mm·hm^2·h)之间,由丘陵区周边向中心逐渐减小,研究区北部的巴中、达县、阆中3站的年均降雨侵蚀力形成高值区,中部的遂宁站形成低值中心,北部大于南部,西部大于东部;4)紫色丘陵区R值主要由≥15mm的降雨构成,占76.9%-82.1%,年内集中度较高,主要分布在汛期5—10月份,占年R值的89%以上;5)R值的年际变化较大,达到中等程度变异,不同地区的R值年际变化差异较大,但并未表现出明显的随时间变化的增减趋势。  相似文献   

17.
Organic amendment is a proved method of improving soil physical properties thus affecting runoff and soil erosion. Urban wastes are a potential source of organic matter and their use would also be a convenient way of disposing of them. A field experiment was conducted from October 1988 to September 1993 in a semiarid Mediterranean site to determine the effect of applying several rates (65, 130, 195 and 260 Mg ha−1) of organic urban solid refuse (USR) on total runoff and soil loss. At the lowest rate, total runoff decreased by 67 per cent compared to the control plot. The decrease was 98 per cent when the highest rate was used. The lowest rate reduced total sediment loss by 81 per cent and the highest rate of 99 per cent. The decrease in soil erodibility at the different USR rates varied from 76 to 95 per cent depending on the year for the lowest rate and between 90 and 99 per cent for the other rates. Clear differences in the hydrologic and erosion responses were found between the eight initial rainfall events (during the first 10 months of the experiment) and the remainder of the events. The causes of such differences were due to the initial tillage of the soil by rotovation and the growth of natural vegetation in the treated plots. The mechanical effect of tillage reduced runoff and increased soil erodibility, although the effect was short‐lived. The addition of USR reduced runoff but lasted longer. An applied rate of 90–100 Mg ha−1 could be considered suitable for application in semiarid zones. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
R. Lal 《Geoderma》1976,16(5):377-387
The effects of four rates of straw mulching on runoff and soil loss were compared with those of no-tillage treatments under natural rainfall conditions using field runoff plots of 25 × 4 m established at 1, 5, 10 and 15% slopes on the International Institute of Tropical Agriculture (IITA) research site near Ibadan, Nigeria. The four rates of straw mulching were 0, 2, 4 and 6 t/ha. The mean annual runoff was 50, 10, 4 and 2% of the total annual rainfall for mulch rates of 0, 2, 4 and 6 t/ha, respectively. Runoff from unmulched treatments was not related to slope. Runoff loss from no-till treatments was only 2% of the rain received. The mean soil losses for the rainstorms greater than 25 mm were 143, 16, 2 and 0.4 kg/ha per mm of rain received for mulched rates of 0, 2, 4 and 6 t/ha, respectively. The soil loss declined exponentially with increasing mulch rate with exponents ranging from approximately ?0.3 to ?0.7. The soil losses from the no-till plots were equal to those from plots that received mulch at the rate of 6 t/ha. Soil erodibility was significantly influenced by time after clearing, with maximum K reached two to three years after forest removal. The nutrient loss in runoff and eroded soil was significant only for unmulched treatments. The maximum annual loss of NO3-N in runoff was about 15 kg/ha. The maximum annual loss of total N in eroded soil from unmulched plots was about 180 kg/ha, that of P, 5 kg/ha, and that of K, about 14 kg/ha.  相似文献   

19.
This study estimates the implications of projected seasonal variations in rainfall quantities caused by climate change for water erosion rates by means of a modeling case study on sugar beet cultivation in the Central European region of Upper-Austria. A modified version of the revised Morgan–Morgan–Finney erosion model was used to assess soil losses in one conventional and three conservation tillage systems. The model was employed to a climatic reference scenario (1960–89) and a climate change scenario (2070–99). Data on precipitation changes for the 2070–99 scenario were based on the IPCC SRES A2 emission scenario as simulated by the regional climate model HadRM3H. Weather data in daily time-steps, for both scenarios, were generated by the stochastic weather generator LARS WG 3.0. The HadRM3H climate change simulation did not show any significant differences in annual precipitation totals, but strong seasonal shifts of rainfall amounts between 10 and 14% were apparent. This intra-annual precipitation change resulted in a net-decrease of rainfall amounts in erosion sensitive months and an overall increase of rainfall in a period, in which the considered agricultural area proved to be less prone to erosion. The predicted annual average soil losses under climate change declined in all tillage systems by 11 to 24%, which is inside the margins of uncertainty typically attached to climate change impact studies. Annual soil erosion rates in the conventional tillage system exceeded 10 t ha− 1 a− 1 in both climate scenarios. Compared to these unsustainably high soil losses the conservation tillage systems show reduced soil erosion rates by between 49 and 87%. The study highlights the importance of seasonal changes in climatic parameters for the discussion about the impacts of global climate change on future soil erosion rates in Central Europe. The results also indicate the high potential of adaptive land-use management for climate change response strategies in the agricultural sector.  相似文献   

20.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号