首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flowering plants are highly sensitive to heat stress during reproductive phase, which covers development from floral initiation to seed maturity. The objectives of this study were to diagnose high temperature effects on pollen production and morphology, production of reactive oxygen species (ROS) in pollen grains and ovules in pea cultivar “CDC Golden.” This study also investigated timing and duration of heat exposure at specific developmental stages of floral buds, open flowers and early set pods on flower and pod abortion, seed development and seed yield in “CDC Golden” and a second cultivar “CDC Sage.” The experiments were conducted in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 4–14 days) during reproductive development. Heat stress reduced the number of pollen grains per anther, induced smaller pollen grains and increased ROS production in pollen grains, but it did not affect ROS accumulation in ovules and ovule number per ovary. Heat exposure when young floral buds were visible at the first reproductive node was more detrimental to flower retention, seed set, pod development and seed yield compared to heat exposure started later when flowers at the second reproductive node were fully open.  相似文献   

2.
The aim of this study was to reduce the length of the breeding cycle for faba bean by accelerating seed setting. We examined the mode and time of exogenous 6-benzylaminopurine (BAP) (cytokinin) application, and cold treatments and their combinations in two faba bean genotypes. Acropetal node number of pod and seed set and pollen viability were recorded during the experiments. Application of BAP improved pollen germination. The application of 10–5 M BAP 4 days after flowering increased seed set at the lower nodes. Cold treatment (8/4°C day/night for 2 days) after the onset of flowering induced the formation of more pods and faster pod set compared to the non-cold treatment. The time to first seed was significantly reduced, and pollen viability was increased in plants exposed to cold treatment. Increased pollen viability also showed a significant positive correlation with seed setting. The combinations of 10–5 BAP and cold treatment together had similar and independent effects. These results will accelerate plant breeding in faba bean by providing additional tools for reducing generation time.  相似文献   

3.
Quinoa (Chenopodium quinoa Willd.) has gained considerable attention worldwide during the past decade due to its nutritional and health benefits. However, its susceptibility to high temperatures has been reported as a serious obstacle to its global production. The objective of this study was to evaluate quinoa growth and pollen morphology in response to high temperatures. Pollen morphology and viability, plant growth and seed set, and several physiological parameters were measured at anthesis in two genotypes of quinoa subjected to day/night temperatures of 22/16°C as a control treatment and 40/24°C as the heat stress treatment. Our results showed that heat stress reduced the pollen viability between 30% and 70%. Although no visible morphological differences were observed on the surface of the pollen between the heat‐stressed and non‐heat‐stressed treatments, the pollen wall (intine and extine) thickness increased due to heat stress. High temperature did not affect seed yield, seed size and leaf greenness. On the other hand, high temperature improved the rate of photosynthesis. We found that quinoa has a high plasticity in response to high temperature, though pollen viability and pollen wall structure were affected by high temperatures in anthesis stage. This study is also the first report of quinoa pollen being trinucleate.  相似文献   

4.
Tomato cultivars differ in their sensitivity to heat stress, and the sensitivity depends on the developmental stage of the plants. It is less known how heat stress affects tomato at the anthesis stage in terms of leaf physiology and fruit set and whether the ability of tomato to tolerate heat at different developmental stages is linked. To investigate photosynthetic gas exchange characteristics, carbohydrate content and fruit set during heat stress, a thermo‐tolerant cultivar (‘LA1994’) and a thermo‐sensitive cultivar (‘Aromata’) were studied at the seedling and anthesis stage. The photosynthetic parameters, maximum quantum efficiency of photosystem II (Fv/Fm), chlorophyll content, carbohydrate content and fruit set were determined in plants grown at 26/18 °C (control) and 36/28 °C (heat stress). The physiological responses including net photosynthetic rate (PN), chlorophyll content and Fv/Fm decreased in ‘Aromata’ at both developmental stages during heat stress, whereas they were unaltered in ‘LA1994’ during heat stress as compared to the respective control. This was accompanied by lower contents of glucose and fructose in mature leaves of ‘Aromata’ at the seedling stage under heat stress. In contrast, the glucose content increased while the fructose content was unaltered in mature leaves of ‘LA1994’ at the seedling stage under heat stress. High temperature induced a similar change in carbohydrate content in the young leaves of both cultivars at anthesis. The fructose and sucrose content were unaffected in the mature leaves of ‘Aromata’ but significantly increased in ‘LA1994’ under heat stress at anthesis. The heat stress treatment decreased pollen viability and inhibited fruit set due to flower wilting and abnormal abscission in ‘Aromata’, whereas fruit set was not inhibited in ‘LA1994’. A decrease in chlorophyll content, photosynthesis and carbohydrate content in the mature leaves of tomato could be related to fruit set failure at high temperature. The results show that physiological responses to heat stress at the seedling stage correspond with the responses at the anthesis stage, demonstrating that screening for heat stress sensitivity can be carried out in young plants.  相似文献   

5.
High temperature (HT) stress is one of the major environmental factors influencing yield of soybean (Glycine max L. Merr.) in the semi‐arid regions. Experiments were conducted in controlled environments to study the effects of HT stress on anatomical changes of pollen and their relationship to pollen function in soybean genotype K 03‐2897. Objectives of this study were to (a) quantify the effect of HT stress during flowering on pollen function and pod set and (b) observe the anatomical changes in pollen grains of soybean plants grown under HT stress. Plants were exposed to HT (38/28 °C) or optimum temperature (OT, 28/18 °C) for 14 days at flowering stage. HT stress significantly decreased in vitro pollen germination by 22.7 % compared to OT. Pollen from HT stress was deformed; it had a thicker exine wall and a disintegrated tapetum layer. HT stress decreased pod set percentage (35.2 %) compared to OT. This study showed that decreases in pollen in vitro germination by HT stress were caused by anatomical changes in pollen, leading to decreased pod set percentage under HT stress.  相似文献   

6.
Temperature stress including low and high temperature adversely affect the growth, development and productivity of crops. Faba bean (Vicia faba L.) is an important crop as both human food source and animal feed, which contains a range of varieties that are sensitive to cold and heat stresses. In this study, 127 faba bean genotypes were collected from gene banks based on differences in geographical origin. The 127 genotypes were treated by single cold stress (2/2 °C day/night temperature (DT/NT)) and 42 genotypes were treated by either single episode of cold or heat (38/30 °C DT/NT) stress, or a combination of both at photosynthetic photon flux density of 250 µmol m?2 s?1. Chlorophyll fluorescence was used to detect the tolerance of faba beans to low and high temperatures. The maximum quantum efficiency of photosystem II (PSII), Fv/Fm, revealed pronounced differences in cold tolerance among the faba bean genotypes. The 42 genotypes were clustered into four groups according to cold and heat stresses, respectively, and the susceptibilities of faba beans under temperature stress could be distinguished. The combination of cold and heat stresses could aggravate the damage on reproductive organs, but not on the leaves, as indicated by the Fv/Fm. These results confirm that the use of Fv/Fm is a useful approach for detecting low and high temperature damage to photosystem II and to identify tolerant faba bean genotypes, however the results also indicate that the geographical origin of the genotypes could not directly be used to predict climate resilience. These sources of cold- and heat-tolerance could improve the temperature tolerance of faba bean in breeding programs.  相似文献   

7.
Heat tolerance in 45 chickpea, lentil, and faba bean genotypes was investigated during 2007/2008 and 2008/2009 at Alexandria Agriculture Research Station, Alexandria, Egypt, using screening methods employing the membrane thermostability technique. Threshold temperature to be used in screening for heat tolerance at germination was also investigated for each crop. Temperatures, responsible for 50% germination were 40, 33.5, and 29°C for chickpea, faba bean, and lentil, respectively. Germination percent under high temperature varied significantly (P ≤ 0.05) amongst genotypes. Germination percentage ranged from 4.8 to 71.6, 39.2 to 90.0, and 4.8 to 68.6, in chickpea, lentil, and faba bean, respectively. Differences were significant (P ≤ 0.05) among faba bean and chickpea genotypes. Membrane relative injury (RI%) showed significant (P ≤ 0.05) variability among the genotypes and ranged from 10.57 to 58, 5.2 to 61.7, and 15.7 to 52.7 in chickpea, lentil, and faba bean, respectively. Canopy temperature was measured to evaluate heat avoidance in tested genotypes. Infra-red thermometry was used to measure canopy temperature and the gradient of canopy to ambient air temperature (∆TC-A) in moisture stressed and unstressed treatments. Canopy temperature, leaf water potential (LWP) and leaf water content were affected by the level of soil moisture. Genotypes were able to bring their canopy temperatures to levels lower than ambient air temperatures but the differences were not significant. A heat stress index (HSI) were computed relating the ∆TC-A in moisture stressed to unstressed treatments. Regression of leaf water potential (LWP) and the heat stress index (HSI) was significant (P ≤ 0.05) in faba bean genotypes in the stressful environment. The results of the present investigation emphasize the efficiency of membrane thermostability technique in selection for heat tolerance in early stages of growth in food legumes.  相似文献   

8.
Atmospheric CO2 enrichment affects C3 crops both directly via increased carbon gain and improved water use efficiency and indirectly via higher temperatures and more frequent climatic extremes. Here we investigated the response of spring wheat (Triticum aestivum L. cv. Triso) to CO2 enrichment (550 vs. 380 µmol/mol) and heat, applied as a constant +4°C increase or a typical heat wave either before or after anthesis, or as two typical heat waves before and after anthesis. We applied a climate chamber approach closely mimicking ambient conditions. CO2 enrichment increased above‐ground biomass and yield by c. 7 and 10%, but was not able to compensate for adverse heat stress effects, neither before nor after anthesis, with few exceptions only. Yield depression due to heat stress was most severe when two heat waves were applied (?19%). This adverse effect was, however, compensated by CO2 enrichment. Applying heat stress before or after anthesis did not exert different effects on yield for both +4°C warming and heat wave application. However, +4°C depressed yield more than a heat wave at ambient CO2, but not so at elevated CO2. Thus, the interactive effects were complex and prediction of future wheat yield under CO2 enrichment and climate extremes deserves more attention.  相似文献   

9.
Elevated temperatures associated with climate change result in crops being exposed to frequent spells of heat stress. Heat stress results in reduced yield in field pea (Pisum sativum L.); it is therefore important to identify cultivars with improved pod and seed retention under heat to mitigate this loss. Objectives were to investigate the effect of heat stress on phenology, yield and pod-based yield components. Sixteen pea cultivars were evaluated at normal and late (hot) seeding dates in the field in Arizona 2012 and in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 7 days) during reproductive development. We measured variation in the pattern of pod retention at four-node positions on plants, seed retention by ovule position (stylar, medial and basal) within pods and screened cultivars for pod retention, seed retention and yield. Heat stress reduced seed yield by accelerating the crop lifecycle and reducing pod number and seed size. Heat stress had the most damaging effect on younger reproductive growth (flowers and pods developed later), resulting in ovary abortion from developing flowers. Heat also accelerated seed abortion in all ovule positions within pods. Two high-yielding cultivars under control temperature, “Naparnyk” and “CDC Meadow”, maintained high yield in heat, and “MFR043” had the lowest yield. Cultivars “40-10” and “Naparnyk” retained the most ovules and seeds per pod, and “MFR043” aborted seeds when exposed to heat. In half of the cultivars, ovules at the basal peduncle end of pods were likely to abort while ovules at the medial and stylar end positions developed into seeds. For seven of the field cultivars, ovules at the medial pod position also produced mature seeds. Cultivars “40-10”, “Naparnyk” and “CDC Meadow” had greater pod and ovule retention or maintained high yield under heat stress, and were identified as heat-tolerant cultivars. Our results allow for a better understanding of pod-based yield components in field pea under heat stress and developing heat-tolerant cultivars.  相似文献   

10.
This study analysed the alleviating effect of elevated CO2 on stress‐induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different origin. The plants were grown in ambient (400 μl l?1) and elevated (800 μl l?1) CO2 with a day/night temperature of 15/10 °C. At the growth stages of tillering, booting and anthesis, the plants were subjected to heat stress of 40 °C for three continuous days. Photosynthetic parameters, maximum quantum efficiency of photosystem II (PSII) photochemistry (Fv/Fm) and contents of pigments and carbohydrates in leaves were analysed before and during the stress treatments as well as after 1 day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained higher PN and Fv/Fm in comparison with plants grown in ambient CO2. Heat stress reduced leaf chlorophyll contents and increased leaf sucrose contents in both cultivars grown at ambient and elevated CO2. The content of hexoses in the leaves increased mainly in the tolerant cultivar in response to the combination of elevated CO2 and heat stress. The results show that heat stress tolerance in wheat is related to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses.  相似文献   

11.
With the expected increase of abiotic stress under global climate change, significant research has been devoted to how abiotic stress will affect crop production. To date, there has been little research on the stage sensitivity of short‐term heat stress to crop lodging and yield determination in canola. This research was conducted in a controlled growth facility and aimed to examine root morphology, pod fertility, seed yield and crop lodging of two contrasting canola genotypes subjected to a short‐term heat stress (27.0/24.3°C, light/dark), imposed respectively at three growth stages, rosette vegetative stage (RVHT), early flowering stage (EFHT) and late flowering stage (LFHT), in comparison with non‐stressed control (CK) (23/17°C). The results demonstrate that heat stress imposed at RVHT and LFHT was less detrimental to seed yield and lodging resistance. However, EFHT showed significant adverse effects on both, which was further confirmed by redundancy analysis (RDA) and structural equation modelling (SEM). Compared with the CK, EFHT resulted in a yield loss of 43%, which was mainly due to poor pod fertility, less number of filled pods (?28%), decreased pollen viability (?38%) and a lower success ratio of filled pods (?29%). The taproot was found to be relatively tolerant to heat stress, but lateral roots were sensitive to heat stress at EFHT and LFHT. Root capacitance could be used as a non‐destructive method for evaluating lateral root morphology. Compared with the CK, EFHT displayed a high risk of stem lodging, as indicated by a 27% lower safety factor. This was mainly attributed to the reduced stem bending strength that was caused by the deterioration of stem mechanical properties under EFHT, as illustrated by SEM. Root lodging resistance was not altered by any stages of short‐term heat stress, as the taproot remained stable.  相似文献   

12.
Our research assesses the feasibility of using artificial selection on pre-mating floral traits to modify the mating system of faba bean (Vicia faba). This analysis considered two synthetic populations, which were derived from different genetic pools and had undergone five years of multiplication. For these populations, we identified floral and inflorescence traits that influence outcrossing per plant and examined the relative importance of these traits in governing yield. Codominant isozyme loci and the mixed-mating model were used to estimate the multilocus female outcrossing rate. A maternal half-sib design was used to evaluate the additive genetic component of floral and inflorescence traits, yield and yield components. Multiple regression was used to assess the effects of floral and inflorescence traits on outcrossing and yield and components of yield. The two populations exhibited mixing mating. Self-fertilization appears to result from the action of pollinating bees, so that its incidence could be modified by selection on floral and inflorescence traits that affect pollination. Floral and inflorescence traits affected individual differences in outcrossing unequally, with most variation being associated with the numbers of displayed flowers and inflorescences. Variation among plants in reward traits and in shape, although statistically significant, had limited and inconsistent influences on individual differences in outcrossing. Yield and its components varied strongly with aspects of floral display and, to a lesser extent, floral design, except for seed weight. Overall, our results imply that both outcrossing and yield could be enhanced by selection for plants that produce more inflorescences, each with relatively few flowers.  相似文献   

13.
The changes of soluble sugar and total nitrogen content of vegetative organs in faba bean, sugar-nitrogen ratio, abscission of reproductive organs and the relationship between sugar-nitrogen ratio and abscission probability were studied using the faba bean cultivar Xichang Dabai . Plants were field grown in 1986, 1988 and 1990. The lands were separated into high yield land, middling yield land and low yield land according to grain yield at maturing stage. The soluble sugar content in vegetative organs (leaf + stem) was greatest from branching to floral initiation stages and pod-set to filling grain stages, and distinctly decreased at the onset of bloom and maturing stages. The total N content was greatest at branching stage, and gradually decreased with growth. In general, the sugar and total N contents in high yield lands were greatest, followed by that in middling yield and low yield lands. The sugar-nitrogen ratio varied depending on the soluble sugar content.
Average yield on high yield lands, middling yield land and low yield land across 3 years were 5048.77 kg/ha, 3744.01 kg/ha and 2378.22 kg/ha, respectively. The total reproductive organs abscission exceeded 90 % of total flower buds. Abscission probability averaged across 3 yield lands and 3 years were 21.6 %, 84.0 % and 32.8 % in flower buds, flowers, and pods, respectively. Node 7–12 of canopy produced more flowers, and fewer flowers and pods were produced in the upper and lower regions. Photosynthate supply has been implicated in control of abscission. Faba bean reproductive organs abscission probability increased with the sugar-nitrogen ratio of vegetative organs decreasing. It seemed that the soluble sugar content influenced significantly the shedding rate during flowering and pod-growing stages.  相似文献   

14.
Heat stress resulting from climate change and more frequent weather extremes is expected to negatively affect wheat yield. We evaluated the response of different spring wheat cultivars to a post‐anthesis high temperature episode and studied the relationship between different traits associated with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield in all cultivars. Significant variation was observed among cultivars in the reduction in average grain weight and grain dry matter yield under heat stress (up to 36 % and 45 %, respectively). The duration of the grain‐filling period was reduced by 3–12 days by the heat treatment. The reduction in the grain‐filling period was negatively correlated with grain nitrogen yield (r = ?0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water‐soluble carbohydrates (WSC) was not related to treatment effects on grain yield or grain weight. However, the treatment effect on stem WSC remobilization was negatively correlated with reduction in grain‐filling duration due to heat stress (r = ?0.74) and positively with treatment effect on grain N yield (r = 0.52). The results suggest that the effect of the heat treatment on GLA was the trait most associated with yield reduction in all cultivars. These findings suggest the importance of ‘stay green’‐associated traits in plant breeding as well as the need for better modelling of GLA in crop models, especially with respect to brief heat episodes during grain filling. There is in particular a need to model how heat and other stresses, including interacting effects of heat and drought, affect duration of GLA after flowering and how this affects source–sink relations during grain filling.  相似文献   

15.
Chickpea suffers cold stress (<10 °C) damage especially during reproductive phase resulting in the abortion of flowers and pods, poor pod set, and reduction in seed yield and seed quality. One of the ways in modifying cold tolerance involves exogenous treatment of the plants with chemicals having established role in cold tolerance. In the present study, the chickpea plants growing under optimum temperature conditions (28/12 °C, as average maximum and minimum temperature) were subjected to cold conditions of the field (10–12/2–4 °C; day/night as average maximum and minimum temperature) at the bud stage. Prior to exposure, these plants were treated exogenously with 10 μm abscisic acid (ABA) and thereafter again after 1 week of exposure. The stress injury measured in terms of increase in electrolyte leakage, decrease in 2,3,5-triphenyl tetrazolium chloride reduction %, relative leaf water content and chlorophyll content was observed to be significantly mitigated in ABA-applied plants. A greater pollen viability, pollen germination, flower retention and pod set were noticed in ABA-treated plants compared with stressed plants. The seed yield showed considerable improvement in the plants treated with ABA relative to the stressed plants that was attributed to the increase in seed weight, greater number of single seeded pods and reduction in number of infertile pods. The oxidative damage measured as thiobarbituric acid-reactive substances was lesser in ABA-treated plants that was associated with greater activities of superoxide dismutase, catalase, ascorbate peroxidase, ascorbic acid, glutathione and proline in these plants. It was concluded that cold stress effects were partly overcome by ABA treatment because of the improvement in water status of the leaves as well as the reduction in oxidative damage.  相似文献   

16.
Factorial pot experiments were conducted to compare the responses of GA‐sensitive and GA‐insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near‐isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40 °C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+eb(tm)) described declining grain set with increasing t, and t5 was that fitted to give a 5 % reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7 ± 0.47 °C (S.E.M., 26 d.f.). Drought at anthesis reduced t5 by <2 °C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5 = 33.9 °C) but booting was particularly heat susceptible without water (t5 = 26.5 °C). In one background (cv. Mercia), for NILs varying at the Rht‐D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht‐D1a, tall, 32.7 ± 0.72; Rht‐D1b, semi‐dwarf, 29.5 ± 0.85; Rht‐D1c, severe dwarf, 24.2 ± 0.72). This trend was not evident for the Rht‐B1 locus or for Rht‐D1b in an alternative background (Maris Widgeon). The GA‐sensitive severe dwarf Rht12 was more heat tolerant (t5 = 29.4 ± 0.72) than the similarly statured GA‐insensitive Rht‐D1c. The GA‐sensitive, semidwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht‐D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semidwarfing with GA‐insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison with effects of semidwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.  相似文献   

17.
The effect of NaCl (?0.1, ?0.4 and ?0.7 MPa) on some physiological parameters in six 23‐day‐old soya bean cultivars (Glycine max L. Merr. namely A 3935, CX‐415, Mitchell, Nazl?can, SA 88 and Türksoy) at 25, 30 and 35 °C was investigated. Salt stress treatments caused a decline in the K+/Na+ ratio, plant height, fresh and dry biomass of the shoot and an increase in the relative leakage ratio and the contents of proline and Na+ at all temperatures. Effects of salt stress and temperature on Chl content, Chl a/b ratio (antenna size) and qN (heat dissipation in the antenna) varied greatly between cultivars and treatments; however, in all cases approximately the same qP value was observed. It indicates that the plants were able to maintain the balance between excitation pressure and electron transport activity. Pigment content and the quantum efficiency of photosystem II exhibited significant differences that depended on the cultivar, the salt concentration and temperature. The cultivars were relatively insensitive to salt stress at 30 °C however they were very sensitive both at 25 and 35 °C. Of the cultivars tested CX‐415 and SA 88 were the best performers at 25 °C compared with SA 88 and Türksoy at 35 °C.  相似文献   

18.
Solanum villosum is an important African leafy vegetable whose yield is limited mainly by competition from early and excess fruit-set. Induced male-sterility is a potential tool to reduce this competition and enhance yields. This study was conducted to investigate the influence of photoperiod and temperature on the floral dynamics of a season-dependent male-sterile mutant. The mutant, named T-5, has flowers which are sepaloid, mostly stamenless, indeterminate and partially restored in winter, late-spring, summer and autumn, respectively. Floral organ restoration was found to be largely independent of photoperiod conditions. Day/night temperatures of 25/25 and 30/20°C were found to favour restoration of the floral organ but most flowers were stamenless and infertile. High night temperature favoured the formation of indeterminate flowers both in the growth chamber (30°C) and in the greenhouse (>25°C). On the other hand, low growth chamber (10°C) and greenhouse (<15°C) night temperature favoured the formation of sepaloid flowers. The optimum temperatures for floral structure and fertility restoration were between 20°C and 25°C (day) and 15–20°C (night). Propagation of T-5 mutant can thus be achieved by growing in regions or seasons with such temperature ranges. Under temperatures unfavourable for fruit-set, leaf productivity is expected to be high.  相似文献   

19.
Full‐grown Artemisia annua plants were subjected to chemical and physical stress conditions, and the effect of these on the concentration and chemical composition of essential oil components (EOC) in the leaves was studied. The chemical stress treatments were performed by foliar application of NaCl, H2O2, salicylic acid and chitosan oligosaccharide (COS). The EOC of the leaves were extracted with n‐hexane and identified and quantified by GC–MS and GC–FID, respectively. Approximately 96 % of EOC in the extracts were identified and quantified of which β‐pinene, camphene, germacrene D, camphor, coumarin and dihydro‐epi‐deoxyarteannuin B were the major EOC accounting for about 75 % of the total content of EOC in the extracts. The physical stress treatment, sandblasting of the plants resulted in a significant enhancement in the content of α‐pinene, camphene, coumarin and dihydro‐epi‐deoxyarteannuin B. The total yield of identified EOC in non‐treated plants (control) was 86.2 ± 13.8 μg g?1 fresh weight (FW) compared with 104.0 ± 9.1 μg g?1 FW in sandblasted plants. The chemical stress treatments did not affect the composition of EOC significantly. The results indicate that chemical stress treatments do not affect the concentration and composition of EOC in full‐grown A. annua plants to the same extent as physical stress treatment by sandblasting.  相似文献   

20.
Autumn‐sown winter‐type faba bean (Vicia faba L.) has been shown to have a yield advantage over spring sowing. Still, adoption of this overwintered pulse crop remains limited in temperate locations, due to inadequate winter hardiness. This research sought to understand how the prevailing temperature during emergence and seedling development, that is pre‐acclimation, influences freezing tolerance. Seedlings grown under a controlled “warm” 17/12°C (day/night) pre‐acclimation environment were initially less freezing tolerant than those grown under a “cold” 12/5°C temperature treatment. Stem and particularly root tissues were primarily responsible for slower cold acclimation, and there was a genotype specific response of above‐ground tissues to pre‐acclimation treatment. Both above and below‐ground tissues should be tested across a range of pre‐acclimation temperatures when screening faba bean germplasm for freezing tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号