首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serial determination of thyroxine concentrations in hyperthyroid cats   总被引:2,自引:0,他引:2  
Serum thyroxine (T4) concentrations of 10 hyperthyroid cats were measured at hourly intervals between 9 AM and 4 PM. In 5 cats, blood samples were obtained by jugular venipuncture; the remaining 5 cats had blood samples obtained from jugular catheters. Over the 7-hour period, a significant temporal (diurnal) variation was not identified in the serum T4 concentrations of the cats (P greater than 0.01). The lowest mean serum T4 concentration (9.1 micrograms/dl) was measured at 3 PM and was 14.2% less than the highest mean serum T4 concentration (10.6 micrograms/dl) measured at 9 AM. Though there were fluctuations in serum T4 concentrations during the 7-hour period, the differences were not systematic. The maximal variation in serum T4 concentrations over the 7-hour period averaged less than 21%. Despite the random variations during the 7-hour period, none of the measured serum T4 concentrations was in the normal range. Measurement of serum T4 concentration from randomly obtained blood samples was determined to be reliable for diagnosing feline hyperthyroidism.  相似文献   

2.
Serum thyroxine (T4) concentrations before and after various IV doses of bovine thyrotropin (TSH) were measured over a 48-hour period in 19 healthy cats. Base-line T4 values, as measured by radioimmunoassay, varied greatly. The peak T4 concentration occurred 6 hours after TSH injection, and there was an increase in post-TSH serum T4 concentration that was linearly related to the logarithm of the dose. Greatest stimulation was seen with the highest dose used (1 U of TSH/kg of body weight), and 6 hours after administration of this dose, the serum T4 concentration range was 4.1 to 8.4 micrograms/dl. The post-TSH serum T4 concentration and the absolute increase in serum T4 concentration after TSH administration correlated more closely with the TSH dose than did the ratio of post-TSH serum T4 concentration to base-line T4 concentration. Therefore, in cats with normal thyroid-binding protein concentrations, the former indices should represent the most reliable assessment of thyroid functional reserve.  相似文献   

3.
The medical records of 62 hyperthyroid cats treated with a fixed dose of 4 mCi of radioactive iodine (131I) were reviewed. In 60 cats, serum thyroxine concentrations were determined after treatment, allowing evaluation of treatment success. Eighty-four percent of the cats had normal serum thyroxine concentrations after treatment. Five of the 60 cats (8%) remained hyperthyroxinemic after treatment. Five cats (8%) were hypothyroxinemic when evaluated within 60 days of treatment. Three of these cats had normal serum thyroxine concentrations 6 months after treatment, and none had clinical signs of hypothyroidism. The administration of a fixed dose of 4 mCi of 131I was determined to be an effective treatment for feline hyperthyroidism.  相似文献   

4.
OBJECTIVE: To determine relationships between commonly measured pretreatment variables and duration of isolation for unrestricted dismissal after oral administration of iodine 131 (131I) for treatment of hyperthyroidism in cats. ANIMALS: 149 hyperthyroid cats treated with 131I. PROCEDURE: A dose of 131I (2.9 to 6.04 mCi [1.07 to 2.23 x 10(8) Bq]) was administered orally to all cats after hyperthyroidism was confirmed by evaluation of serum total thyroxine (T4) concentrations. Forward stepwise regression analysis was used to determine whether pretreatment total T4 concentration, serum creatinine concentration, body weight, age, 131I dose, or concurrent administration of cardiac medication (specifically excluding thyroid suppression drugs) could be used as pretreatment predictors of duration of isolation in a clinical setting. Gamma radiation emission rate at dismissal was < 2.0 mR/h at skin surface over the thyroid region. RESULTS: Mean +/- SD duration of isolation was 16.67 +/- 4.42 days (95% confidence interval, 9.2 to 24.1 days). The regression equation for duration of isolation calculated on the basis of dose of 131I (duration of isolation [days] = 3.2 + [2.66 X mCi - 131I dose]) yielded a regression line with a 95% confidence interval of +/- 3.3 days; only 15% of the variation was explained. CONCLUSIONS AND CLINICAL RELEVANCE: A pretreatment estimate for duration of isolation could be determined only from an equation based on the orally administered dose of 131I. These findings suggest that administration of the lowest efficacious dose possible is the dominant factor in reduction of duration of isolation for cats treated with 131I.  相似文献   

5.
Response to thyrotropin (TSH) was evaluated in 2 groups of mixed-breed dogs. Thyrotropin (5 IU) was administered IV to dogs in group 1 (n = 15) and IM to dogs in group 2 (n = 15). Venous blood samples were collected immediately before administration of TSH and at 2-hour intervals for 12 hours thereafter. In group 1, the maximum mean concentration (+/- SD) of thyroxine (T4; 7.76 +/- 2.60 micrograms/dl) and 3,5,3'-triiodothyroxine (T3; 1.56 +/- 0.51 ng/ml) was attained at postinjection hours (PIH) 8 and 6, respectively. However, the mean concentration of T4 at PIH 6 (7.21 +/- 2.39 micrograms/dl) was not different (P greater than 0.05) from the mean concentration at PIH 8. The maximum mean concentration of T4 (10.10 +/- 3.50 micrograms/dl) and T3 (2.22 +/- 1.24 ng/ml) in group 2 was attained at PIH 12 and 10, respectively. Because dogs given TSH by the IM route manifested pain during injection, had variable serum concentrations of T3 after TSH administration, and may require 5 IU to achieve maximal increases in serum T4 concentrations, IV administration of TSH is recommended. The optimal sampling time to observe maximal increases in T3 and T4 after IV administration of TSH was 6 hours. Repeat IV administration of TSH may cause anaphylaxis and, therefore, is not recommended.  相似文献   

6.
Serum triiodothyronine (T3) and thyroxine (T4) concentrations were determined after IV administration of 200 micrograms of thyrotropin-releasing hormone (TRH) to 10 healthy euthyroid dogs. Significant (P less than 0.05) changes were not found in the T3 concentration throughout an 8-hour sampling interval. All dogs had a significant increase (P less than 0.05) in the T4 concentration at 4, 5, 6, 7, and 8 hours after TRH administration. The largest increase in the serum T4 concentration occurred 4 hours after TRH injection. From 4 to 8 hours after TRH administration, the mean increase above basal T4 concentrations was 13.9 +/- 5.4 ng/ml.  相似文献   

7.
OBJECTIVE: To assess whether the risk of development of hypothyroidism after treatment with iodine 131 (131I) was associated with the pattern of sodium pertechnetate Tc 99m activity in the thyroid gland detected via scintigraphy before treatment in cats with hyperthyroidism. DESIGN: Retrospective study. ANIMALS: 165 cats. PROCEDURE: Medical records of cats with hyperthyroidism that had been treated with 131I (from 1990 to 2002) and had undergone scintigraphy of the thyroid gland before treatment were reviewed; data regarding signalment, scintigraphic findings (classified as unilateral, bilateral-asymmetric, bilateral-symmetric, or multifocal patterns), serum total thyroxine (T4) concentrations before treatment and prior to hospital discharge, and 131I treatment were collected. A questionnaire was sent to each referring veterinarian to obtain additional data including whether the cats subsequently developed hypothyroidism (defined as serum total T4 concentration less than the lower reference limit > or = 3 months after treatment). RESULTS: 50 of 165 (30.3%) 131I-treated cats developed hypothyroidism. Hypothyroidism developed in 39 of 109 cats with bilateral, 10 of 50 cats with unilateral, and 1 of 6 cats with multifocal scintigraphic patterns of their thyroid glands. Cats with a bilateral scintigraphic pattern were approximately 2 times as likely to develop hypothyroidism after 131I treatment than were cats with a unilateral scintigraphic pattern (hazard ratio, 2.1; 95% confidence interval, 1.04 to 4.2). CONCLUSIONS AND CLINICAL RELEVANCE: Cats with hyperthyroidism that have a bilateral scintigraphic pattern in the thyroid gland before 131I treatment appear to have a significantly higher risk of subsequently developing hypothyroidism, compared with cats with a unilateral scintigraphic pattern.  相似文献   

8.
Serum fructosamine concentrations were measured in 35 healthy cats and in 30 hyperthyroid cats before and 30 days after curative radioiodine ((131)I) treatment. Hyperthyroid cats were divided into those with 30 day post-treatment total thyroxine (T4) concentrations within (EuT4) or below (HypoT4) the reference range. The median (semi-interquartile range, SIR) fructosamine concentration was significantly lower in hyperthyroid compared with healthy cats (295. 0 (18.5) micromol l(-1)) both before (254.0 (27.6) micromol l(-1)) and after (268.5 (28.0) micromol l(-1)) treatment (P < 0.001 in each case). (131)I therapy was associated with increases in serum fructosamine (mean increase 20.4 micromol l(-1), P = 0.039) and total protein (6.3 g l(-1), P < 0.002) in the HypoT4 group and in globulin concentration in both EuT4 (5.9 g l(-), P < 0.002) and HypoT4 (5.2 g l(-1), P = 0.023) groups. There were no direct relationships between the observed elevations in fructosamine concentration and those in total protein or globulin concentrations suggesting that the effect may be due to reduced rates of protein turnover. Reduced values may need to be considered when interpreting serum fructosamine concentrations for monitoring the degree of glycaemic control in diabetic cats with concurrent hyperthyroidism.  相似文献   

9.
Feline hyperthyroidism can be treated by thyroidectomy, antithyroid drugs, or radioactive iodine-131 (131I). The aim of this retrospective study was to evaluate the treatment of 83 hyperthyroid cats with 131I The dosage of 131I ranged from 4 to 6 milliCurie (mCi). Blood samples for determination of plasma concentrations of total thyroxine (TT4), urea, and creatinine were collected before, ten days after, and several months after treatment. In addition, arterial blood pressure was measured before and ten days after treatment. The median plasma TT4 concentration ten days after 131I treatment (27 nmol/L, 64 cats) was significantly lower than that before treatment (123 nmol/L). The median plasma TT4 concentration several months after 131I treatment was 22,5 nmol/L (40 cats). Ten days and several months after 131I treatment, plasma TT4 concentration had decreased below the upper limit of the reference range in 64 (77%) and 72 cats (87%), respectively. In four cats the plasma TT4 concentration had decreased below the lower limit of the reference range, but only two cats had symptoms of hypothyroidism. Plasma urea and creatinine concentrations were not increased ten days after 131I treatment, but the median plasma creatinine concentration was significantly higher several months after treatment when compared with before 131I treatment. Before treatment in 28 cats a high arterial blood pressure (> 180 mmHg) was measured, whereas after treatment in 25 cats a high arterial blood pressure was measured. The results of this study indicate that 131I treatment is an effective therapy in most cats with hyperthyroidism.  相似文献   

10.
Thirty-two elderly domestic shorthaired cats (mean age 12.9 years) were treated with radioiodine (131I). The dose of 131I administered ranged from 39 mBq to 134 mBq. Twenty-eight cats became euthyroid after treatment, one became hypothyroid and three remained hyperthyroxaemic. Two of the hyperthyroxaemic cats were successfully re-treated with 131I. Five cats died from concurrent diseases within one year of treatment. The administration of a dose of 131I selected by assessing the severity of the clinical signs, the size of the thyroid gland(s) and the serum level of thyroxine was an effective treatment for hyperthyroidism.  相似文献   

11.
Thyroid function was evaluated in 20 healthy dogs by thyrotropin (TSH) response testing. Two dose regimens were used: 5 IU of TSH given IV and 1 IU of TSH given IV. Blood samples were collected prior to and at 4 and 6 hours after TSH administration. Serum was obtained and analyzed for total 3,5,3'-tri-iodothyronine and thyroxine (T4) concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 5 IU of TSH at 4 and 6 hours. The 1-IU dose of TSH failed to induce adequate increase in T4 concentration in 7 dogs at 4 and 6 hours when the criteria for normal response were post-TSH serum concentration T4 greater than or equal to 3.0 micrograms/dl and serum T4 increase by greater than or equal to 100% over baseline serum T4 concentration. One IU of TSH induced increase in serum T4 concentration over baseline; however, the increase was significantly (P less than 0.05) less than that in response to a 5-IU dose at 6 hours after administration of TSH.  相似文献   

12.
Effects of thyrotropin-releasing hormone (TRH) on serum concentrations of thyroid hormones were studied in 36 mixed-bred dogs. Dogs were randomly assigned to 7 groups. Significant increases (P less than 0.05) of serum thyroxine (T4) values occurred as early as 2 hours and reached a peak at 6 to 8 hours after IV injection of 300 to 1,100 micrograms of TRH. Thyroxine concentrations in response to a TRH dose greater than 500 micrograms were similar to those observed with the 300-micrograms dose. Transient coughing, vomiting, salivation, and defecation after large doses (900 and 1,100 micrograms) were observed. Mean serum T4 concentration decreased from 2.1 micrograms/dl to 0.9 micrograms/dl within 1 day of thyroidectomy. Clinical signs of hypothyroidism, including lethargy, dry coats, and diffuse alopecia, were present in 2 dogs at a month after surgical operation. Thyroxine concentrations were detectable for greater than 2 months. Injection (IV) of 700 micrograms of TRH 6 weeks after surgical operation had no effect on serum concentration of T4 in thyroidectomized dogs. In 5 T4-treated dogs, TRH (700 micrograms, IV) significantly increased the serum T4 value, indicating that pituitary thyrotropes were responsive to TRH, in spite of daily medication of 0.8 mg of T4. Four dogs were treated orally with 200 mg of propylthiouracil/day for 5 weeks. Intravenous injection of 700 micrograms of TRH in propylthiouracil-treated dogs had no effect on the serum T4 concentration, indicating that TRH had no effect on serum T4 values in these dogs during the experimental period. These results indicate that TRH can replace bovine thyrotropin for the canine thyroid function test.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Methimazole Treatment of 262 Cats With Hyperthyroidism   总被引:4,自引:0,他引:4  
The efficacy and safety of the antithyroid drug methimazole were evaluated over a 3-year period in 262 cats with hyperthyroidism. In 181 of the cats, methimazole was administered for 7 to 130 days (mean, 27.7 days) as a preoperative preparation for thyroidectomy. The remaining 81 cats were given methimazole for 30 to 1,000 days (mean, 228 days) as sole treatment for the hyperthyroid state. After 2 to 3 weeks of methimazole therapy (10 to 15 mg/d), the mean serum thyroxine (T4) concentration decreased significantly (P less than 0.001) from a pretreatment value of 12.1 micrograms/dl to 2.1 micrograms/dl. The final maintenance dose needed to maintain euthyroidism in the 81 cats that were given methimazole as sole treatment for hyperthyroidism ranged from 2.5 to 20 mg/d (mean, 11.9 mg/d). Clinical side effects developed in 48 (18.3%) cats (usually within the first month of therapy), which included anorexia, vomiting, lethargy, self-induced excoriation of the face and neck, bleeding diathesis, and icterus caused by hepatopathy. Mild hematologic abnormalities developed in 43 (16.4%) cats (usually within the first 2 months of treatment), which included eosinophilia, lymphocytosis, and slight leukopenia. In ten (3.8%) cats, more serious hematologic reactions developed including agranulocytosis and thrombocytopenia (associated with bleeding). These hematologic abnormalities resolved within 1 week after cessation of methimazole treatment. Immunologic abnormalities associated with methimazole treatment included the development of antinuclear antibodies in 52 of 238 (21.8%) cats tested and red cell autoantibodies (as evidenced by positive direct antiglobulin tests) in three of 160 (1.9%) cats tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Radioactive iodine (131I) was used in the treatment of a 12-year-old female dog with hyperthyroidism resulting from a large, unresectable (and metastatic) thyroid carcinoma associated with signs of severe inspiratory stridor and dyspnea. Hyperthyroidism was diagnosed on the basis of clinical signs (polyuria, polydipsia, polyphagia, weight loss, nervousness) and high basal serum thyroxine (T4) concentrations, as well as thyroid radioiodine kinetic studies that showed a high radioiodine uptake into the thyroid (% thyroid uptake) and markedly increased serum concentrations of protein-bound iodine-131 (PB131I) after 131I tracer injection. Thyroid imaging revealed diffuse radionuclide accumulation by the tumor, which involved both thyroid lobes. The dog was treated with three large doses of radioiodine (131I), ranging from 60 to 75 mCi, given at intervals of 5 to 7 months. The dog became euthyroid, and the size of the tumor decreased by approximately 25% after each 131I treatment, improving the severe inspiratory stridor and dyspnea, but both the hyperthyroid state and breathing difficulty recurred within a few months of each treatment. The dog was euthanatized 5 months after the last treatment because of progressive tracheal compression and pulmonary metastasis.  相似文献   

15.
The effect of oral administration of sulfadiazine and trimethoprim in combination on serum concentrations of thyroxine (T4), triiodothyronine (T3) and free thyroxine (fT4) and the thyroid hormone response to thyrotropin administration was assessed. Six dogs were administered sulfadiazine (12.5 mg/kg) and trimethoprim (2.5 mg/kg) orally for 28 days; six untreated dogs acted as controls. Serum T4, T3 and fT4 were determined weekly during and for four weeks after treatment. Thyrotropin response tests were performed prior to treatment, after four weeks of treatment and three weeks after stopping treatment. There were no significant differences in mean serum T4, T3 or fT4 concentrations between treated and control groups at any time during the study. Mean concentration of serum T4 over time did not differ significantly from baseline concentration in either group. Significant differences in the mean serum T3 and fT4 concentrations occurred at several time points in treatment and control groups, and were apparently unrelated to treatment. Significant differences in the T4 or T3 response to thyrotropin administration within or between groups were not present. Serum T3 and fT4 concentrations fluctuate in normal dogs. Administration of sulfadiazine and trimethoprim in combination does not affect tests of thyroid function in the dog.  相似文献   

16.
Thirty-two elderly domestic shdrthaired cats (mean age 12.9 years) were treated with radioiodine (131I). The dose of 131I administered ranged from 39 mBq to 134 mBq. Twenty-eight cats became euthyroid after treatment, one became hypothyroid and three remained hyperthyrox-aemic. Two of the hyperthyroxaemic cats were successfully re-treated with 131I. Five cats died from concurrent diseases within one year of treatment. The administration of a dose of 131I selected by assessing the severity of the clinical signs, the size of the thyroid gland(s) and the serum level of thyroxine was an effective treatment for hyperthyroidism.  相似文献   

17.
The efficacy of radioactive iodine (131I) administration was studied in a series of 50 hyperthy-roid cats. The dose administered to each cat was based on the clinical severity of the thyrotoxicosis, the serum total thyroxine (TJ concentration and the size of the goitre estimated by palpation. The activity ranged from 80 to 200 MBq (mean ± SD, 143 ± 24 MBq}. The 131I was injected intravenously in 27 cases and subcutaneously in 23 cases. Each cat was hospitalised for 30 days after the injection. Regardless of the route of injection, none of the cats exhibited any side effects after therapy and all tolerated the hospitalisation period well. There was a significant (P<0.001) decrease in the serum total T4 concentration (reference range, 10.4 to 42.0 nmol/litre) from a mean ± SD of 181.3 ± 111.4 nmol/litre (range, 43.8 to 575.6 nmol/litre) to a mean ± SD of 19.0 ± 29.6 nmol/litre (range, 2.0 to 175.7 nmol/litre) 30 days following the injection of the radioisotope. Five cats remained hyperthyroid, although in each case the serum total T4 concentrations had decreased from pre-treatment values. Two of the cats subsequently became euthyroid within three and five months of therapy, respectively, two were lost to adequate follow-up and the remaining cat was successfully retreated four months later. Before treatment, four of these cases had high scores based on the three criteria used for dose estimation. Serum total T4 concentrations below the reference range developed after treatment in many cases, but were often transient. Clinical evidence of hypothyroidism was not apparent in any cat. Recurrence of hyperthyroidism has not occurred in follow-up periods of up to 32 months. There was no difference in the outcome between the cats injected intravenously or subcutaneously and the latter was considered to be safer and simpler. The administration of an approximated dose of 131I proved to be an effective treatment for hyperthyroidism in 47 (94.0 per cent) of the cats and obviated the need for sophisticated nuclear computer facilities. There may be a lag period in some cases before euthy-roidism is achieved and this should be considered before the administration of a second dose. 131I can be administered subcutaneously without untoward effects.  相似文献   

18.
SUMMARY Forty cats with hyperthyroidism were treated using 200 to 300 (typically 250) mBq of orally administered 131I. Thirty-six cases (90%) were successfully treated, as assessed by resolution of clinical signs and reduction In plasma thyroxine concentrations to normal or reduced values after treatment. Although higher doses of 131I appear to be required when the radioisotope is administered orally rather than Intravenously, a less stressful administration procedure and greater availability of therapy capsules offer useful advantages for treating thyrotoxic cats.  相似文献   

19.
BACKGROUND: Hyperthyroidism is the most diagnosed endocrine disorder in cats and radioiodine (131I) is the treatment of choice. The dose emission rate and radioactivity in urine, saliva, and on hair and paws are determined by the dose of administered 131I. A dose reduction of therapeutic 131I could possibly be achieved after recombinant human thyrotropin (rhTSH) administration as in humans with nodular goiter. HYPOTHESIS: rhTSH will increase radioiodine uptake in hyperthyroid cats. ANIMALS: Five hyperthyroid cats. METHODS: Twenty-five micrograms rhTSH (day 1) or 2 mL 0.9% sodium chloride (NaCl) (day 9) was injected IV. One hour later, 11.4 +/- 4.1 (mean +/- SD) MBq 123I was injected IV. Radioactive iodine uptake (RAIU) was measured 6, 12, and 24 hours after rhTSH (RAIU-rhTSH) or NaCl (RAIU-blanco) injection. Blood samples for measurement of TT4 were taken before injection of rhTSH or NaCl (TT4(0)) and at the time of imaging. RESULTS: Percentages of RAIU-rhTSH (and RAIU-blanco) at 6, 12, and 24 hours after administration of rhTSH were 34 +/- 18 (31 +/- 21), 46 +/- 20 (38 +/- 18), and 47 +/- 15 (36 +/- 14). There was a statistically significant effect of rhTSH administration on RAIU (P = .043) but not on serum TT4 concentration. Baseline serum TT4(0) concentration influenced RAIU-rhTSH significantly at 6 hours (P = .037). CONCLUSION AND CLINICAL IMPORTANCE: The increased RAIU observed after rhTSH administration in hyperthyroid cats could lead to a lower therapeutic dose of 131I after rhTSH administration in hyperthyroid cats and decreased risk of environmental and owner contamination during and after hospitalization.  相似文献   

20.
BACKGROUND: The clinical significance of high serum concentration or activity of markers of liver damage in cats with hyperthyroidism is unknown. OBJECTIVE: To evaluate serum markers of liver function and damage, and ultrasonographic changes in cats with hyperthyroidism and with high liver enzymes, and to determine if abnormalities resolve after treatment with 131I. ANIMALS: Nineteen cats with hyperthyroidism (15 with high serum activities of liver enzymes) and 4 age-matched healthy control cats. METHODS: Serum bile acids, albumin, ammonia, cholesterol, and blood urea nitrogen concentrations, and activities of liver-derived enzymes, and blood glucose concentrations were measured before and after 131I therapy. These values were compared with those of cats that were euthyroid. In addition, gross liver parenchymal changes detected by abdominal ultrasonographic examination, before and after 131I therapy were evaluated. RESULTS: High serum liver enzyme activities were not associated with abnormalities in hepatic parenchyma and liver functional variables, regardless of the degree of increase. Serum liver enzyme activities return to normal after control of hyperthyroidism with 131I therapy. Cats with hyperthyroidism have a significantly higher serum fasting ammonia concentration than cats who were euthyroid (P = .019). Cats with hyperthyroidism also have significantly lower serum cholesterol (P = .005) and glucose (P = .002) concentrations before compared with after 131I therapy. Nine of 19 cats with hyperthyroidism had trace ketonuria. CONCLUSIONS AND CLINICAL IMPORTANCE: These results demonstrate that extensive examination for hepatobiliary disease in most cats with hyperthyroidism is unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号