首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of feline leukaemia virus   总被引:1,自引:1,他引:0  
Feline leukaemia virus (FeLV) usually occurs in its natural species, the domestic cat. FeLV is also important to human individuals as a comparative model, as it may cause a variety of diseases, some malignant and some benign, such as immunosuppression, which bears a resemblance to AIDS (acquired immune deficiency syndrome) in man. FeLV is transmitted among cats by contagion. The main sources of infection are persistently infected carrier cats which continuously excrete virus. Dissemination of FeLV among cats may be prevented by identifying infected carrier cats and removing them from contact with non-infected cats. Removal programmes using indirect immunofluorescence antibody tests were applied successfully in The Netherlands. The proportion of FeLV-positive cats decreased from 9% in 1974 to approximately 3% in 1985 during such a programme. The results of a removal programme carried out in a catbreeders' society were even better: the incidence of cats positive for FeLV decreased from 11% in 1974 to less than 2% within 4 years. None of the cats tested in this society has been found to be positive for FeLV since 1984. Besides removal programmes, other methods of control, such as pre-exposure treatment, were developed to prevent the spread of FeLV. We attempted to protect kittens against oronasal infection with FeLV by treatment with virus-neutralizing (VN) monoclonal antibodies (MoAbs) directed against an epitope on the viral glycoprotein gp70. However, no protection was achieved. It is unlikely that the amount of VN antibodies, the mode and route of their application or the infectious dose of FeLV used can account for this failure. Other possible explanations for the lack of protective effect are that (i) the restricted epitope specificity of the MoAb preparation used may have led to selection of neutralization-resistant virus mutants, or (ii) other mechanisms than virus neutralization (complement-mediated lysis, antibody-dependent cell cytotoxicity), that may be involved in protection, function less efficiently with MoAb. However, in the light of our finding that an early anti-idiotypic response is observed in all cats following administration of the MoAb preparation, the rapid clearance of anti-FeLV MoAb from the circulation is a more likely explanation. Efforts were further made to develop a vaccine for controlling FeLV infection. The immunostimulating complex vaccine (FeLV-ISCOM vaccine), a subunit vaccine in which FeLV gp70 is presented in a particular manner, looks promising. The protective effect of FeLV-ISCOM vaccine was studied by vaccinating six 8-week-old SPF cats with ISCOM, followed by oronasal challenge with FeLV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
To study the presence and spread of feline leukaemia virus (FeLV) in The Netherlands, seven different groups of cats were examined. The indirect fluorescent antibody (IFA) test was used to detect FeLV-antigen in blood smears. Of cats with lymphosarcoma/leukaemia 73.2% were positive and 32.4% with infectious peritonitis were positive. Only one of sixty-six cats with other tumours–a cat with mammary carcinoma–was positive.
Forty-two (7.5%) of 557 cats with various complaints were positive for FeLV-antigen. The IFA-test appeared to be an important diagnostic supplement.
Of all stud males which had had contact with FeLV-positive cats 24.7% were positive for FeLV-antigen, whereas all stud males which had not had this contact, were negative.
There was a distinct difference between the percentages of FeLV-positive individuals in the groups of cats which had had (20.6%) and which had not had (0.4%) contact with FeLV-positive cats.
From the follow-up study it was found that 67.3% of the FeLV-positive cats died from, or were destroyed because of, FeLV-associated diseases within a period of 20 months.  相似文献   

3.
A significant drop in the prevalence of feline leukaemia virus (FeLV) antigenaemic cats and antigen-associated lymphomas has been observed after the introduction of FeLV vaccination and antigen-testing with removal of persistently antigenaemic cats. However, recent reports have indicated that regressively infected cats may contain FeLV provirus DNA and that lymphoma development may be associated with the presence of provirus alone. In the present study, we investigated the presence of FeLV antigen and provirus DNA in 50 lymphomas by immunohistochemistry and semi-nested polymerase chain reaction, respectively. Interestingly, almost 80% of T-cell lymphomas and 60% of B-cell lymphomas contained provirus DNA while only 21% of T-cell lymphomas and 11% of B-cell lymphomas expressed FeLV antigen. In conclusion, our results support previous hypotheses that vaccination and removal of persistently antigenaemic cats have led to a drop in FeLV antigen-expressing lymphomas. However, FeLV provirus DNA is still present in a high percentage of feline lymphomas.  相似文献   

4.
Objective To determine prevalences of feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) infections in ‘healthy’ cats that, through acute misadventure or other circumstance, were presented to veterinary practitioners. Prevalences of FeLV and FIV in this population were compared to those in a population of predominantly sick cats. Design and procedures Serum specimens were obtained over a 2-year period from 200 cats oldeer than 1 year of age presented to veterinary clinics for routine procedures, including cat fight injuries or abscesses, vehicular trauma, neutering, dental scaling, vaccination, grooming or boarding. An additional 894 sera were obtained over approximately the same period from specimens submitted by veterinarians to a private clinical pathology laboratory, mainly from sick cats suspected of having immune dysfunction, but including some sera from healthy cats being screened prior to FeLV vaccination. FIV antibody and FeLV antigen were detected in samples using commercial enzyme immunoassays. Results Amongst 200 ‘healthy’ cats, the prevalence of FeLV infection was 0 to 2%, and the prevalence of FIV was 6.5 to 7.5%, depending on the stringency of the criteria used to define positivity. FIV infection was significantly more prevalent in cats which resided in an inner city environment (P = 0.013). Of the 894 serum specimens submitted to the laboratory by practitioners, 11/761 (1.4%) were FeLV positive, while 148/711 (20.8%) were FIV positive. The prevalence of FIV was significantly higher in these predominantly ‘sick’ cats than in cats seen for routine veterinary procedures (P < 0.00001), while there was no difference in the prevalence of FeLV (P = 0.75) Conclusions The prevalence of FeLV and FIV in healthy cats may have been substantially overestimated in some previous Australian surveys. FeLV infection would appear to be a rare cause of disease in Australian cats. The higher prevalence of FIV positivity in sick as opposed to healthy cats infers that FIV infection contributes to the development of disease.  相似文献   

5.
Feline leukaemia virus (FeLV) can be a challenging infection to diagnose due to a complex feline host-pathogen relationship and occasionally unreliable test results. This study compared the accuracy of three point-of-care (PoC) FeLV p27 antigen test kits commonly used in Australia and available commercially worldwide (SNAP FIV/FeLV Combo, Witness FeLV/FIV and Anigen Rapid FIV/FeLV), using detection of FeLV provirus by an in-house real-time polymerase chain reaction (qPCR) assay as the diagnostic gold standard. Blood (n = 563) and saliva (n = 419) specimens were collected from a population of cats determined to include 491 FeLV-uninfected and 72 FeLV-infected individuals (45 progressive infections [p27 and qPCR positive], 27 regressive infections [p27 negative, qPCR positive]). Sensitivity and specificity using whole blood was 63% and 94% for SNAP Combo, 57% and 98% for Witness, and 57% and 98% for Anigen Rapid, respectively. SNAP Combo had a significantly lower specificity using blood compared to the other two kits (P = 0.004 compared to Witness, P = 0.007 compared to Anigen Rapid). False-positive test results occurred with all three kits using blood, and although using any two kits in parallel increased specificity, no combination of kits completely eliminated the occurrence of false-positive results. We therefore recommend FeLV proviral PCR testing for any cat that tests positive with a PoC FeLV antigen kit, as well as for any cat that has been potentially exposed to FeLV but tests negative with a FeLV antigen kit, before final assignment of FeLV status can be made with confidence. For saliva testing, sensitivity and specificity was 54% and 100%, respectively, for all three test kits. The reduced sensitivity of saliva testing compared to blood testing, although not statistically significant, suggests saliva testing with the current generation of PoC FeLV antigen kits is unsuitable for screening large populations of cats, such as in shelters.  相似文献   

6.
Stray cat colonies in urban and rural areas of Lombardy, northern Italy, were surveyed for seroprevalence of feline immunodeficiency virus (FIV) antibodies, feline leukaemia virus (FeLV) antigen and Toxoplasma gondii IgG. Of 316 cats tested, 6.6% were positive for FIV and 3.8% were positive for FeLV infection; 203 cats were tested for T gondii IgG antibodies and a prevalence of 30.5% was detected. Statistical analysis tested the influence of provenience, age, gender, health status and laboratory results on seroprevalence and found male gender and adult age were risk factors for FIV infection. FIV-infected cats were more likely to have a decreased red blood cell count than FIV seronegative cats. No predictors were significantly associated with FeLV and T gondii seropositivity. Colony cats in this study posed a limited risk for retrovirus infection to pet cats allowed outdoors, whereas toxoplasmosis exposure was comparable with the worldwide data.  相似文献   

7.
OverviewFeline leukaemia virus (FeLV) is a retrovirus that may induce depression of the immune system, anaemia and/or lymphoma. Over the past 25 years, the prevalence of FeLV infection has decreased considerably, thanks both to reliable tests for the identification of viraemic carriers and to effective vaccines.InfectionTransmission between cats occurs mainly through friendly contacts, but also through biting. In large groups of non-vaccinated cats, around 30–40% will develop persistent viraemia, 30–40% show transient viraemia and 20–30% seroconvert. Young kittens are especially susceptible to FeLV infection.Disease signsThe most common signs of persistent FeLV viraemia are immune suppression, anaemia and lymphoma. Less common signs are immune-mediated disease, chronic enteritis, reproductive disorders and peripheral neuropathies. Most persistently viraemic cats die within 2–3 years.DiagnosisIn low-prevalence areas there may be a risk of false-positive results; a doubtful positive test result in a healthy cat should therefore be confirmed, preferably by PCR for provirus. Asymptomatic FeLV-positive cats should be retested.Disease managementSupportive therapy and good nursing care are required. Secondary infections should be treated promptly. Cats infected with FeLV should remain indoors. Vaccination against common pathogens should be maintained. Inactivated vaccines are recommended. The virus does not survive for long outside the host.Vaccination recommendationsAll cats with an uncertain FeLV status should be tested prior to vaccination. All healthy cats at potential risk of exposure should be vaccinated against FeLV. Kittens should be vaccinated at 8–9 weeks of age, with a second vaccination at 12 weeks, followed by a booster 1 year later. The ABCD suggests that, in cats older than 3–4 years of age, a booster every 2–3 years suffices, in view of the significantly lower susceptibility of older cats.  相似文献   

8.
Thirty-six formalin-fixed, paraffin-embedded enucleated globes from cats with a diagnosis of diffuse anterior uveal melanoma were obtained. Sections of tumor were excised, deparaffinized, and subjected to nested polymerase chain reaction (PCR) to identify proviral DNA sequences from the feline leukemia virus (FeLV)–feline sarcoma virus (FeSV; 36 eyes), and the feline immunodeficiency virus (FIV; 18 eyes). All samples tested were negative for FIV DNA. Three samples were positive for FeLV–FeSV DNA. This is the first reported evidence of a possible link between naturally occurring feline anterior uveal melanoma and the presence of FeLV–FeSV DNA.  相似文献   

9.
A representative sample of the pet cat population of the United Kingdom was surveyed. Blood samples from 1204 sick and 1007 healthy cats of known breed, age and sex were tested for antibodies to feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV). The prevalence of FIV was 19 per cent in sick cats and 6 per cent in healthy cats, and the prevalence of FeLV was 18 per cent in sick cats and 5 per cent in healthy cats; both infections were more common in domestic cats than in pedigree cats. Feline immunodeficiency virus was more prevalent in older cats but FeLV was more prevalent in younger cats. There was no difference between the prevalence of FeLV in male and female cats but male cats were more likely to be infected with FIV than female cats. No interaction was demonstrated between FIV and FeLV infections. Of the cats which were in contact with FIV in households with more than one cat, 21 per cent had seroconverted. The prevalence of FeLV viraemia in cats in contact with FeLV was 14 per cent. The clinical signs associated with FIV were pyrexia, gingivitis/stomatitis and respiratory signs, and with FeLV, pyrexia and anaemia. It was concluded that both viruses were significant causes of disease, and that the cats most likely to be infected with FIV were older, free-roaming male cats and for FeLV, younger, free-roaming cats.  相似文献   

10.
A closed household of 26 cats in which feline coronavirus (FCoV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) were endemic was observed for 10 years. Each cat was seropositive for FCoV on at least one occasion and the infection was maintained by reinfection. After 10 years, three of six surviving cats were still seropositive. Only one cat, which was also infected with FIV, developed feline infectious peritonitis (FIP). Rising anti-FCoV antibody titres did not indicate that the cat would develop FIP. The FeLV infection was self-limiting because all seven of the initially viraemic cats died within five years and the remainder were immune. However, FeLV had the greatest impact on mortality. Nine cats were initially FIV-positive and six more cats became infected during the course of the study, without evidence of having been bitten. The FIV infection did not adversely affect the cats' life expectancy.  相似文献   

11.
Molecular techniques have demonstrated that cats may harbour feline leukaemia virus (FeLV) provirus in the absence of antigenaemia. Using quantitative real-time polymerase chain reaction (qPCR), p27 enzyme-linked immunosorbent assay (ELISA), anti-feline oncornavirus-associated cell-membrane-antigen (FOCMA) antibody testing and virus isolation (VI) we investigated three groups of cats. Among cats with cytopenias or lymphoma, 2/75 were transiently positive for provirus and anti-FOCMA antibodies were the only evidence of exposure in another. In 169 young, healthy cats, all tests were negative. In contrast, 3/4 cats from a closed household where FeLV was confirmed by isolation, had evidence of infection. Our results support a role for factors other than FeLV in the pathogenesis of cytopenias and lymphoma. There was no evidence of exposure in young cats. In regions of low prevalence, where the positive predictive value of antigen testing is low, qPCR may assist with diagnosis.  相似文献   

12.
Abstract

AIMS

To estimate the prevalence of cats testing positive for antibodies to feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) antigens in domestic cats entering a New Zealand animal shelter, based on a commercial point-of-care ELISA, to identify risk factors associated with cats testing positive, and to compare the results obtained from the ELISA with those obtained using PCR-based testing.  相似文献   

13.
In the past, feline leukaemia virus (FeLV) infection, and also latent FeLV infection, were commonly associated with lymphoma and leukaemia. In this study, the prevalence of FeLV provirus in tumour tissue and bone marrow in FeLV antigen-negative cats with these tumours was assessed. Seventy-seven diseased cats were surveyed (61 antigen-negative, 16 antigen-positive). Blood, bone marrow, and tumour samples were investigated by two polymerase chain reaction (PCR) assays detecting deoxyribonucleic acid (DNA) sequences of the long terminal repeats (LTR) and the envelope (env) region of the FeLV genome. Immunohistochemistry (IHC) was performed in bone marrow and tumour tissue. None of the antigen-negative cats with lymphoma was detectably infected with latent FeLV. The prevalence of FeLV viraemia in cats with lymphoma was 20.8%. This suggests that causes other than FeLV play a role in tumorigenesis, and that latent FeLV infection is unlikely to be responsible for most feline lymphomas and leukaemias.  相似文献   

14.
Haemobartonella felis infection was demonstrated in 38 cats which could be divided into four groups as follows: group A, feline leukaemia virus (FeLV) free cats with H felis infection alone; group B, FeLV free cats with H felis infection and other clinical conditions; group C, FeLV positive cats with H felis infection but no clinical manifestation of FeLV related or any other intercurrent disease; and group D, FeLV positive cats with H felis infection and clinical manifestations of FeLV related or other diseases. Cats in group A were healthy carriers of the infection and none was anaemic, whereas some in group B had clinical haemobartonellosis and anaemia. This anaemia was mainly mild, normocytic and normochromic. Most of the cats in group C and all in group D were more severely ill and anaemic, the anaemia usually being macrocytic and hypochromic. Splenomegaly occurred only in groups C and D. Treatment with tetracyclines did not eliminate H felis from any of the cats and blood transfusions were ineffective in promoting long term recovery from anaemia in cats with intercurrent H felis and FeLV infections. The findings in the cats in groups C and D were further compared with those in a fifth group of cats which were infected with FeLV but free of H felis.  相似文献   

15.
Transmission of feline leukaemia virus in the milk of a non-viraemic cat   总被引:3,自引:0,他引:3  
The possibility of the transmission of feline leukaemia virus (FeLV) from latently infected cats was studied. Five female cats with latent infections were examined for evidence of transmission of the virus to their kittens. One of the cats infected members of four consecutive litters of kittens which subsequently became persistently viraemic and transmitted the virus to other susceptible kittens by contact. Shortly after birth its kittens were apparently FeLV-free since neither viral antigen nor infectious virus was detected in their blood and no virus was found in cell cultures made from aspirates of bone marrow. The kittens became viraemic from 45 days of age onwards at a time when their passively acquired colostral FeLV neutralising antibodies were no longer detectable. Transmission of the virus occurred via the milk since both FeLV antigen and infectious virus were found in milk samples taken six weeks after kittening and the virus was transmitted to a fostered kitten. Eleven weeks after the birth of the fourth litter the cat became viraemic. The intermittent presence of FeLV antigens detected by the Leukassay F test, but not infectious virus, in the plasma of this cat over the previous months and a low level of serum neutralising antibodies distinguished it from four other latently infected queens which did not transmit infection to their kittens. These factors may indicate a risk of milk transmission and reactivation of latent virus.  相似文献   

16.
A comparison of three methods of feline leukaemia virus diagnosis   总被引:5,自引:0,他引:5  
Samples of blood from pet cats were examined for evidence of feline leukaemia virus (FeLV) by three techniques: virus isolation, immunofluorescence and an enzyme-linked immunosorbent assay (ELISA) Leukassay F. There was good agreement between the results from virus isolation and immunofluorescence. However, about 30 per cent of cats which were positive for FeLV antigen by ELISA were negative by either of the other tests. The status of most of these cats was unchanged four or 12 weeks later.  相似文献   

17.
Forty-six cats with clinical haemobartonellosis were studied; 75 per cent of the cats of known age were two-and-a-half years old or younger, 50 per cent were intact males and 19.5 per cent were castrated males. The predominant signs of the disease were tachypnoea, lethargy, depression, anorexia, infestation with fleas, pale mucous membranes, icterus, emaciation, dehydration, splenomegaly, anaemia, leucocytosis, increased activities of alanine aminotransferase and aspartate aminotransferase, and azotaemia. Thirty-eight per cent of the cats that were tested for feline leukaemia virus (FeLV) antigen were positive, and 22 per cent of those tested for feline immunodeficiency virus (FIV) antibodies were positive. The prevalence of both FeLV and FIV was much higher than in the general Israeli cat population. The cats infected with both Haemobartonella felis and FeLV had a significantly lower body temperature, were more anaemic and the mean cell volume of their erythrocytes was greater than in the cats with haemobartonellosis alone.  相似文献   

18.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses causing significant morbidity and mortality in cats. The aim of this study was to describe the epidemiological, clinical and clinicopathologic aspects of FeLV and FIV infections in different populations of cats in Greece, including client-owned cats, stray cats and cats who live in catteries.A total of 435 cats were prospectively enrolled. Serological detection of FeLV antigen and FIV antibody was performed using a commercial in-house ELISA test kit.The results showed that 17 (3.9 %) and 40 (9.2 %) of the 435 cats were positive for FeLV antigen and FIV antibody, respectively, whereas 5 (1.1 %) had concurrent infection with FeLV and FIV. Factors that were associated with FeLV antigenemia, based on multivariate analysis, included vomiting, rhinitis, infection with FIV, neutropenia, decreased blood urea nitrogen and increased serum cholesterol and triglyceride concentrations. Factors associated with FIV seropositivity included male gender, older age, outdoor access, weight loss, fever, gingivostomatitis, skin lesions and/or pruritus and hyperglobulinemia.Various clinical signs and laboratory abnormalities were found to be significantly associated with retroviral infections, suggesting that current guidelines to test all sick cats should be followed, taking into particular consideration the high-risk groups of cats found in this study.  相似文献   

19.
The purpose of this study was to determine if polymerase chain reaction (PCR) could be used to detect FeLV proviral DNA in bone marrow samples of cats with varying suspicion of latent infection. Blood and bone marrow samples from 50 cats and bone marrow from one fetus were collected, including 16 cats with diseases suspected to be FeLV-associated. Serum enzyme-linked immunosorbent assay (ELISA), blood and bone marrow immunofluorescent antibody test (IFA), and blood and bone marrow PCR were performed on each cat, and IFA and PCR on bone marrow of the fetus. Forty-one cats were FeLV negative. Five cats and one fetus were persistently infected with FeLV. Four cats had discordant test results. No cats were positive on bone marrow PCR only. It appears persistent or latent FeLV infection is not always present in conditions classically associated with FeLV.  相似文献   

20.
A cross-sectional survey of a convenience sample of cats was carried out to determine the prevalence of and risk factors for respiratory tract disease, feline calicivirus (FCV) infection and feline herpesvirus (FHV) infection. Seven hundred and forty cats were studied; samples for isolation of FCV and FHV were obtained from 622 (84%). Data on individual cat and household variables were obtained by questionnaire for each cat and analysed using univariable and logistic regression analysis. Thirty-eight percent (282/740) of cats surveyed had respiratory tract disease. Eighteen of 24 predictor variables were found to be significantly (P<0.05) associated with the presence of respiratory tract disease in a cat on univariable analysis. Following logistic regression, several factors retained significance including isolation of FCV and FHV, younger cats (4-11 months of age) and multiple cat households. A negative association was found with breeding catteries and other types of household in comparison with rescue catteries. Overall, feline calicivirus was isolated from 162/622 (26%) of cats sampled; 33% of the cats with respiratory tract disease were FCV positive compared to 21% of healthy cats. Variables significantly associated with FCV isolation on logistic regression were the presence of respiratory tract disease and contact with dogs with and without respiratory tract disease. Feline herpesvirus was isolated from 30/622 (5%) of all cats sampled; 11% of cats with respiratory tract disease were FHV positive compared to 1% of healthy cats. Variables significantly associated with FHV isolation on univariable analysis included age, gender, and the presence of respiratory tract disease. Vaccination showed a negative association. Logistic regression analysis of the data for FHV was limited by the sample size and the low prevalence of FHV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号