首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The water vapor diffusivities of vitreous and mealy wheat endosperms were measured using diffusion cells containing wax-scaled cylinders of endosperm. The diffusion cells were incubated in a chamber that was maintained at a constant temperature and relative humidity. A water vapor gradient was created by filling each diffusion cell with desiccant. A steady-state condition was achieved within 24 h. The mean diffusivities for the vitreous endosperm samples of cvs Arizona and Len were 2·0 × 10-8 cm2/s. The diffusivities for mealy samples of cvs Logan and Titan were 3·5 and 9·1 × 10-8 cm2/2, respectively. The liquid water diffusivities of whole caryopses were similar for five vitreous and five mealy wheat samples tested. No change was detected in the diffusion mechanism for any of the samples in the temperature range tested. The energy of activation (E) was significantly (P < 0·05) higher for endosperm for cv. Len, a vitreous sample, than for cv. Titan, a mealy sample.  相似文献   

2.
Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m−2 for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m−2 for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy–time curves of loading–unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.  相似文献   

3.
A simple, rapid method for the preparation of parallelepiped-shaped samples from a grain is used in the proposal of a study of the rheological behaviour of wheat endosperm. Compression rupture, creep and relaxation tests are used. A series of compression tests on mealy and vitreous endosperm of different wheat varieties (soft, hard and durum) shows that the rheological properties are influenced by both the genetic origin and grain vitreousness. The main mechanical characteristics—Young's modulus, elastic and rupture stresses, rupture energy and rupture strain—were determined at moisture contents of 12 to 17%. The influence of the moisture content on rheological behaviour is demonstrated. The vitreous endosperm of some wheat varieties displays considerable ductility before rupture. The nature of this plasticity was analysed by creep and relaxation tests on hard and soft wheats. Comparison of the different endosperm rheology values clarifies the notions of vitreousness and hardness. Wheat classification based on endosperm mechanical characteristics is proposed. It seems that Young's modulus characterises hardness whereas rupture energy is related to the vitreousness of the different varieties studied. Entering the results in a Young's modulus–rupture energy system leads to a classification of wheats according to two essential factors: hardness of varietal origin and vitreousness of cultural origin.  相似文献   

4.
The characterisation of the wheat endosperm by mechanical tests of compression highlighted a relation between the rupture energy and the elasticity modulus for different varieties of wheat; this relation allows us to distinguish mealy and vitreous endosperms. An approach based on the micromechanics of cohesive granular materials is used to analyse these experimental results. A geometrical model of the wheat endosperm made of grains linked by cohesive bonds is proposed. We introduced two parameters, the first one α represents the percentage of active bonds (bonds where the stiffness and strength are non-zero), and the second one β represents the threshold of the bond's rupture. The parameter β can be related to the cross-section of the bond. This model successfully describes the mechanical tests on the wheat endosperm. The comparison with the experimental tests makes it possible to clearly differentiate vitreous wheats and mealy wheats and then attribute this property to the parameter β. The model shows the same tendency as regards the evolution of the rupture energy and the elastic modulus with the parameter α. The modelling of endosperm by the mechanics of cohesive granular media provides a new theoretical framework to interpret the rheology of endosperm. This approach allows us to connect this rheology to the mechanical actions at the scale of the granules.  相似文献   

5.
Durum wheat grains are used for producing food, such as pasta or couscous. The grain mechanical properties which are linked to its internal micro-structure (i.e. endosperm porosity) are known to determine its ability to produce semolina during milling. The proportion of grains having porous endosperm in a batch appears therefore as a critical quality factor for the durum wheat value chain. Our objective was to investigate the ability of X-ray micro-tomography (μCT) method to describe the porous or vitreous counterpart structures in the endosperm of durum wheat grains. We selected two different durum wheat samples displaying vitreous or partially porous endosperms. The grains were analyzed using μCT at two pixel sizes (1 μm or 7 μm). The μCT data collected at 7 μm pixel size were used for qualitative classification of grains according to apparent distribution curve of the porosity parameters. Analysis of μCT images at 1 μm pixel size allowed us to propose pore size classification in the vitreous and porous parts of the endosperm in three durum wheat grain. Results are used to better describe the durum-wheat endosperm microstructure, but requires long scanning periods.  相似文献   

6.
The fracture properties of small, cylindrical samples of endosperm machined from single kernels of several varieties of wheat were measured using three methods: compression, wedge fracture and indentation. In addition, dynamic compression tests were also performed in impact loading. Density measurements using a variable density liquid gradient were carried out on machined endosperm samples that had previously been tested for fracture properties, enabling direct comparisons between their density and fracture properties. Within each variety, a distribution of density and hardness values was found. Soft wheat varieties (Riband, Apollo) showed a broad distribution of density with medians in the range 1340 to 1395 kg/m3, whilst hard varieties such as Mercia and a durum wheat exhibited much narrower distributions and higher mean densities, Mercia being skewed towards higher densities, with a median at around 1410 kg/m3. A considerable amount of overlap in density between the soft and hard variety occurred, with both containing a significant proportion of harder and higher density wheat grains, and the major difference appearing to be the presence in the soft wheat of a large proportion of lower density endosperm in the range 1280 to 1360 kg/m3. The differences in density between endosperm samples were attributed to variations in endosperm porosity, which were correlated with the fracture properties of the endosperm. It is proposed that increased levels of porosity weaken the endosperm structure and are responsible in part for soft endosperm texture. The relationship between endosperm density and fracture properties was non-linear, the failure stress and fracture toughness increasing rapidly as the density approached a limiting value corresponding to the density expected for pore-free endosperm. This indicates that endosperm is a notch sensitive material, where the pores concentrate applied stresses and can act as sites of crack initiation. It was shown that the notch sensitivity of endosperm is qualitatively consistent with models of brittle fracture based on fracture mechanics theory, i.e. stress concentration by voids.  相似文献   

7.
Bread quality depends in part on the textural properties of the crumb; softness and strength being two important textural attributes. This study examined differences between instrumentally-measured textural properties of the crumb of bread made from two flours; one possessing extra strong dough mixing characteristics and a second of moderate strength (red spring wheat). Bread crumb specimens, notched and un-notched, were subjected to tensile loading and the crumb's initial (elastic) modulus, stress at failure (crumb strength) and tear resistance were determined. The same mechanical parameters were determined on bread crumb that had been compressed approximately five-fold in order to destroy crumb structure. For un-notched specimens, stiffness and strength were of the order of 11 and 1 kN/m2, respectively, whereas after compression they were 230 and 10 kN/m2, respectively. For CWRS breadcrumb, toughness increased from 4·1 J/m2to 12·3 J/m2following crumb compression. Bread crumb made from a flour possessing extra strong dough properties was stronger than bread crumb made from a more conventional red spring wheat flour, and there was an indication that extra strong flour bread crumb specimens were stiffer. Compression of the bread crumb lessened the difference between the mechanical properties of the two bread types, particularly for strength and tear resistance. The results indicated that bread crumb structure plays a predominant role in the textural properties of bread crumb.  相似文献   

8.
Moisture-tempering is typically performed prior to first break in wheat milling operations to enhance separation of bran, germ, and endosperm. To improve the milling performance and to increase yield, a better knowledge of moisture distribution and migration in individual wheat grains during tempering is essential. The research described herein was conducted to demonstrate the non-destructive measurement of the three-dimensional (3D) distribution of moisture in a single wheat grain. A 3D magnetic resonance imaging (MRI) technique was adapted for the probing of single wheat grains at storage moistures (c.12% wet basis). The technique is demonstrated in this report on one grain. A 3D projection reconstruction (3DPR) technique was used to acquire high resolution proton density images. The spatial resolution of the images was 94×94×94 μm3. The 3D proton density images were related to the 3D moisture distribution in the wheat grain. At 12% moisture content, the moisture distribution in the starchy endosperm of the wheat was not uniform. The variation of the moisture distribution was from 7·3% to 16·4% wb.  相似文献   

9.
Durum wheat is grown in the Mediterranean area where drought and high temperature frequently prevail and impact grain texture, composition and yield. The purpose of this work was to examine the effect of high temperature on grain development and final composition according to the timing of exposure. High temperature (up to 27.5 °C) was applied either during the linear grain filling or drying phases or during whole grain development. The dynamics of grain dry mass, water, glutenin polymers, and protein bodies during grain development were determined. Irrespective of high temperature timing, the arrest of grain filling was observed at 45.9% grain moisture content. At that point, starch granules included in endosperm cells reached their physical packing limit, limiting further deposits. HT applied before physiological maturity shortened the duration of grain filling and resulted in a significant increase in grain protein concentration and in the proportion of vitreous grain. Late formation of sodium dodecyl sulfate (SDS)-insoluble glutenin polymers below 32% grain moisture content was also favored. The ability of wheat storage protein to form a viscoelastic matrix embedding starch granules at the beginning of grain desiccation is proposed to be mandatory for gaining vitreous grains and a high proportion of SDS-insoluble glutenin polymers.  相似文献   

10.
The dehydrodiferulic acid content of different common and durum wheat grains and milling fractions was determined by an HPLC procedure. The 8-O-4′, 5–8′ benzofuran, 5–8′ and 5-5′ dehydrodimers were identified in all samples studied and occurred in decreasing relative amounts, respectively. Durum wheats were twice as concentrated in dimers as common wheats. An important genetic variation for dehydrodiferulic acid content was shown within durum wheat grains, whereas the agronomic conditions had no effect. There was 10 to 20 times more dehydrodiferulic acids in external layers (aleurone, bran) than in the starchy endosperm of durum wheat grains. The content and composition in dimers of the inner endosperm did not vary according to genotypes and cultivation conditions. The ratio of dehydrodimers to monomers of ferulic acid which represented an index of dimerisation, was 1·6 times higher in the external layers of the grain than in the endosperm. No relation was found, however, between the degree of ferulic acid dimerisation and the milling behaviour of durum wheat grains.  相似文献   

11.
Designing the equipment for processing, sorting, sizing and other post-harvesting equipment of agricultural products requires information about their physical properties. In this study, various physical properties of rough rice cultivars were determined at a moisture content of 10% (wet basis). In the case of Sorkheh cultivar, the average thousand grain weight, equivalent diameter, surface area, volume, sphericity, aspect ratio, true density, bulk density and porosity were 21.64 g, 3.35 mm, 31.76 mm2, 20.27 mm3, 39.71%, 0.28, 1269.1 kg/m3, 544.34 kg/m3, and 56.98%, respectively. The corresponding values were 20.52 g, 3.4 mm, 32.58 mm2, 21.06 mm3, 39.88%, 0.29, 1193.38 kg/m3, 471.21 kg/m3, and 60.37% for Sazandegi cultivar. For Sorkheh cultivar, the average static coefficient of friction varied from 0.2899 on glass to 0.4349 on plywood, while for Sazandegi cultivar the corresponding value varied from 0.2186 to 0.4279 on the same surfaces. Angle of repose values for Sorkheh and Sazandegi cultivars were 37.66° and 35.83°, respectively. Linear model for describing the mass of rough rice grain was investigated. Mass was estimated with single variable of kernel length with a determination coefficient as 0.862 for Sorkheh cultivar whereas for Sazandegi cultivar was as 0.860.  相似文献   

12.
White flour from wheat was shown to contain basic-ascorbate oxidase (AOX) enzymes (pI 7·6–9·6) and acidic-AOX enzymes (pI 5·1–6·6) in a ratio of 0·4:1, based on chromatography data. Immature wheat kernels (two weeks post-anthesis) contained about 12 times more AOX activity (units/g dry weight) than flour from mature grain, and the ratio of basic- to acidic-AOX was 5:1. Acidic-AOX was purified 90-fold from flour by hydrophobic interaction, gel filtration and anion exchange chromatography. Basic-AOX was purified 20 000-fold from immature wheat by hydrophobic interaction, anion exchange, cation exchange and gel filtration chromatography in a yield of 5%. The acid-AOX had a M of 140 k, was optimally active at pH 6·3 and 40 °C, and was stable in the pH range 5–9 and at 30 °C for 0·5 h at pH 6·2. The Km values were 0·26 m for L-ascorbic acid and 0·93 m for D-iso ascorbic acid. The basic-AOX had a M of 139 k and subunit M of 72 k. The enzyme was optimally active at pH 6·2 and 50 °C, and was stable in the pH range 5–9 and at 40 °C for 0·5 h at pH 6·2. The Km values were 0·30 m for L-ascorbic acid and 0·53 m for D-iso ascorbic acid. The absorption spectrum of basic-AOX had absorption maxima at 280 nm and 607 nm of similar magnitude to those measured in AOX fromCucurbita species (squash). This indicates that wheat AOX contains protein-bound copper similar to other plant AOX.  相似文献   

13.
The effect of water on the mechanical properties of extruded breads was studied, at room temperature. As the moisture content was increased from 6 to 9% moisture, the resistance to fracture (compression tests) or rupture (tensile tests) was improved. Above this moisture range, plasticisation by water was the dominant phenomenon. The brittle to ductile transition was observed to occur within a moisture content range from 9 to 13·7% (w/w). The influence of water on the crispness of extruded bread, evaluated with sensory evaluation, is also described.  相似文献   

14.
Protein content is well known to affect the functional properties of processed wheat products. Traditionally performed on aliquots (0·25–2·2 g) from samples ranging in size from 30–40 g (for combustion and Kjeldahl analyses) to several hundred grams (for whole-grain near-infrared analysis), these methods inherently do not provide information on single-kernel protein variability. Inspection procedures by the United States Department of Agriculture for grading and classification of wheat are undergoing change to provide the processor or end user with information on the variability of several single-kernel properties including hardness, moisture, weight, and wheat class. The present study has focused on demonstrating the feasibility of measuring crude protein content of single wheat kernels by near-infrared reflectance. More than 300 commercial wheat samples from the 1992 U.S. harvest, representing five (hard red winter, hard red spring, soft red winter, hard white, and soft white) of the six (durum excluded) market classes were chosen, from which 10 kernels were randomly selected and handled on a single-kernel basis. Handling consisted of reflectance scanning (1100–2498 nm), drying (for moisture compensation), and combustion (for reference protein-content determination). Partial least squares and multiple linear regression models, when applied to samples excluded from calibration, demonstrated standard errors of performance ranging from 0·462 to 0·720% protein depending on the modeling technique, number of classes used to develop the model, and the wheat class tested. The pooling of wheat classes to produce a general model did not diminish model accuracy. Best results were achieved with an 1100–1400-nm region. Model performance worsened as the wavelength region widened or as the minimum wavelength shifted from 1100 nm to higher values.  相似文献   

15.
Accelerated aging at 50 °C significantly affected the physical and chemical properties of sorghum and maize. Aging caused associations between starch granules, protein matrix, and cell walls. During aging, floury areas of the endosperm became more corneous; as the endosperm hardened, strong associations between starch and protein developed, causing the endosperm to fracture through endosperm cells instead of along cell walls, which is common for non-aged maize. Aging significantly decreased the pasting viscosity of starch, molecular solubility at 85 °C and the molecular weight of solubilized starch. Solubility of albumins and globulins decreased while solubility of proteins extracted by a reducing agent and/or in alkaline pH increased during aging. Decreased solubility and functionality of starch and protein in aged grain appear to be due to protein oxidation.  相似文献   

16.
Maize grain starch is the major energy source in animal nutrition, and its high digestion and utilization largely depend on endosperm traits and the structure of the starch-lipoprotein matrix. The aim of this work was to determine floury and vitreous endosperm traits and its relation to starch digestibility rate. In total, kernels of 30 hybrids were manually dissected, and amylose, total zein and starch and non-starch lipids were determined in both vitreous and floury endosperm. Starch digestibility of the whole kernel was determined based on glucose released during a two-step in vitro pig model of enzymatic digestion, and starch digestibility rate was calculated according to the first-order kinetics. The vitreous endosperm of tested hybrids had higher contents of amylose (204.6 vs 190.4 g/kg), zein (63.2 vs 40.4 k/kg) and starch lipids (5.6 vs 4.9 g/kg), and lower content of non-starch lipids (7.3 vs 9.6 g/kg) than floury endosperm. Digestibility coefficients varied among hybrids, and starch digestibility rate varied from 0.73 to 1.63 1/h. Lipids in both vitreous and floury endosperm negatively correlated with the most of digestion coefficients, whereas zein correlated in vitreous and amylose in the floury endosperm (P < 0.05). Starch digestibility rate negatively correlated with all traits, except amylose content in vitreous endosperm. As a result, a linear regression model with four variables including contents of zein and starch lipids in vitreous and zein and amylose in floury endosperm can predict more than 65% variability of starch digestibility rate of tested hybrids.  相似文献   

17.
为探讨生物炭与灌水对春小麦产量和品质的综合效应,以北疆灌区春小麦为研究对象,通过随机区组试验,设置3个灌水量[4 500 m3·hm-2(W0)、4 050 m3·hm-2(W1)和3 600 m3·hm-2(W2)]和3个生物炭施用量[0 t·hm-2(B0)、10 t·hm-2(B1)和20 t·hm-2(B2)]水平,比较分析了不同生物炭用量与灌水量组合条件下春小麦干物质累积、产量和籽粒蛋白质含量等品质指标的差异,并运用基于熵值的DTOPSIS法进行综合效应评价。结果表明,不同灌水量条件下施用生物炭对春小麦干物质累积量影响均不显著,但可提升籽粒品质,灌水量和生物炭的交互作用对春小麦籽粒品质与产量的影响显著。在W0条件下春小麦籽粒蛋白含量随生物炭用量增加呈先升高后降低趋势,且所有施加生物炭处理的籽粒蛋白质含量均低于B0W0处理;W1条件下施加生物炭处理的籽粒蛋白质含量变化趋势与W0条件下...  相似文献   

18.
In wheat, the ability to store and remobilise large amounts of stem water soluble carbohydrates (WSC) to grain constitutes a desirable trait to incorporate into germplasm targeted to regions with frequent terminal drought. The main aim of this paper was to examine the relationships between WSC storage, grain number and grain weight across several environments. A small set of recombinant inbred lines (2–4) contrasting in stem WSC were grown in six field trials where water availability, sowing date and/or N level were manipulated, with line yields ranging from 400 to 850 g m−2 across experiments. Biomass, N and WSC concentration (WSCc, mg g−1 dry weight) and amount (WSCa, g m−2) were monitored. A resource-oriented area-based model [Fischer, R.A., 1984. Growth and yield of wheat. In: Smith, W.H., Bante, S.J. (Eds.), Potential Productivity of Field Crops Under Different Environments. International Rice Research Institute, Los Baños, pp. 129–154] and intrinsic rates of organ growth were used to investigate the consequences on grain number of potential competition between spike and stem around flowering.  相似文献   

19.
Non-leaf green organs of wheat plants may have significant photosynthetic potential and contribute to grain yield when the plants are subjected to stress at late growth stages. Canopy structure, change of green non-leaf organ area (e.g., ear, peduncle, sheath), the proportion of green non-leaf organs area to total green area and the contribution proportion from different organs’ photosynthate to grain yield in winter wheat (Triticum aestivum L.) were studied at Wuqiao Experiment Station of China Agricultural University, Hebei, China, in 2001-2002 and 2002-2003 using two winter wheat cultivars, Shijiazhuang8 (SJZ-8) and Lumai21 (LM-21). Four irrigation treatments used were W0 (no water applied during spring), W1 (750 m3 ha−1 water applied at elongation), W2 (1500 m3 ha−1 applied 50% at elongation and 50% at anthesis) and W4 (3000 m3 ha−1 applied 25% at upstanding, booting, anthesis and grain filling), respectively. Results showed that the area of top three leaf blades decreased and the proportion of green non-leaf organ area to the total green area at anthesis increased with the decreasing of water supply. Root weight increased in the 0-100 cm soil layer and decreased in the 100-200 cm layer when water supply increased, suggesting reducing irrigation enhanced root weight in deep soil layer. The photosynthetic contribution of non-leaf organs above flag leaf node to grain yield increased with decreasing water supply, and was significantly higher than that of the flag leaf blade contribution. Winter wheat grain yield increased, but water use efficiency (WUE) decreased, with increase in water supply. Higher light transmission ratio in the canopy after anthesis was achieved with smaller size and high quality top leaf blades, higher grain-leaf ratio and larger proportion of green non-leaf area, which lead to higher canopy photosynthetic rate and WUE after anthesis. Irrigation of 1500 m3 ha−1 applied in two parts, 750 m3 ha−1 applied at elongation and another 750 m3 ha−1 applied at anthesis, was the best irrigation scheme for efficient water use and for high yield in winter wheat.  相似文献   

20.
Wheat flour tortillas (31·9% moisture) were stored at −60, −12, 0, 4, 22, and 35 °C to evaluate textural changes during staling. Subjective rollability and two-dimensional extensibility tests revealed that tortillas stored at ≥0 °C had increasing force, work and modulus of deformation values during storage. Tortillas stored at ≤−12 °C retained their fresh attributes over 25 days. Tortillas staled more as defined by rheological changes when stored at 22 °C than at 0, 4, or 35 °C. Optimum storage temperatures of wheat flour tortillas are ≤−12 °C while optimum staling temperatures are between 4 and 35 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号