首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postmortem aging of carcasses obtained from Angus-Hereford (n = 8) and 5/8 Brahman crossbred (n = 8) heifers was investigated to determine the cause of variation in meat tenderness. Raw longissimus muscle (LM) myofibril fragmentation index was lower and cooked LM Warner-Bratzler shear force was greater for the 5/8 Brahman crossbreds (P less than .05). The activities of calcium-dependent protease (CDP) -I and -II were not affected (P greater than .05) by breed; however, CDP inhibitor activity was higher (P less than .05) in the 5/8 Brahman carcasses. The activities of cathepsins B and B + L were not affected by breed or postmortem storage time (0, 1, 3, 7 or 14 d). Hereford-Angus carcasses were fatter opposite the 12th rib and had higher USDA yield grades and marbling scores (P less than .05). Hereford-Angus crossbreds had less dark, coarse band formation around the exterior of the LM and lighter, finer-textured lean (P less than .05). Cooking loss (%) and cooking rate (g/min) were not affected by breed or postmortem aging (P greater than .05). The increased toughness in the 5/8 Brahman carcasses may be due to increased CDP inhibitor activity.  相似文献   

2.
Biological tenderness differences between longissimus muscles (LM) from Bos indicus and Bos taurus breeds were evaluated. Steers and heifers of Hereford x Angus (H x A, n = 10), 3/8 Sahiwal x H, A or H x A (3/8 SAH, n = 6) and 5/8 Sahiwal x H, A or H x A (5/8 SAH, n = 11) crosses were utilized. Muscle temperature and pH were monitored every 3 h for the first 12 h and at 24 h. Samples were obtained within 1 h and at 24 h postmortem from the LM for determination of calcium-dependent protease (CDP) -I and -II and CDP inhibitor (INH) activities. At 1 and 14 d postmortem, LM samples were removed for determining cathepsin B and B + L activity, soluble and total collagen, sarcomere length, muscle-fiber histochemistry, shear force and sensory-panel traits. Data were analyzed using least squares procedures with fixed effects of breed cross, sex and their interaction. No significant breed cross effects were observed for carcass traits or rates of pH and temperature decline. Steaks from H x A had lower (P less than .05) shear-force values and higher (P less than .05) sensory scores for tenderness at 1 and 14 d postmortem than steaks from 3/8 and 5/8 SAH. Correspondingly, 5/8 SAH had lower (P less than .05) myofibril fragmentation indices than H x A at 1, 3, 7 and 14 d postmortem. Breed cross effects were not significant for sarcomere length, fiber types, soluble and total collagen, cathepsin B and B + L specific activity, CDP-I and -II activity and INH activity within 1 h postmortem. However, INH total activity/100 g of muscle was greater (P less than .01) at 24 h postmortem for 5/8 SAH (208.8 +/- 14.8) and 3/8 SAH (195.6 +/- 19.3) than for H x A (136.3 +/- 14.9). For H x A, SDS-PAGE revealed that by d 1 desmin had been subjected to proteolysis, and by d 14 desmin could not be detected, but a 30,000-dalton component was clearly evident. However, in 5/8 SAH, desmin remained visible at d 14 without a 30,000-dalton component appearing. This reduced protein hydrolysis may account for less tender meat in SAH; INH apparently influences this process.  相似文献   

3.
Activities of acidic proteases (cathepsin B + L) and neutral, calcium-dependent proteases (CDP) were quantified to determine whether differences in proteolytic activity could explain differences in meat tenderness among breed types. Steers (n = 32) of known percentage Angus (A) and Brahman (B) breeding were used to establish differences in meat tenderness (A; 3/4A-1/4B; 1/2A-1/2B; 1/4A-3/4B). Samples were removed from the longissimus muscle within 1 h postmortem and within 2 h were frozen for subsequent determination of cathepsin B + L, CDP-I, CDP-II and CDP-inhibitor activities. Warner-Bratzler shear (WBS) was assessed after 1, 5 and 10 d of postmortem aging. Taste panel evaluations, conducted on steaks that were subjected to 5 d of aging, detected no differences. At d 1, WBS did not differ among breed types; however, by d 10 of aging, steaks from Angus steers were more tender (P less than .05) than steaks from 1/2B and 3/4B steers. The Angus and 1/4B steaks had significantly more (P less than .05) cathepsin B + L activity than the 3/4B. The CDP had no relationship with WBS; however, CDP-inhibitor was positively related to d-1 WBS (r = .41, P less than .05). Cathepsin B + L activity was negatively related to WBS at d 10 (r = -.44, P less than .05). These data suggest that differences in meat tenderness among breed types may be explained partially by differences in proteolytic enzyme activity.  相似文献   

4.
We studied the effects of high-temperature conditioning (HTC) on beef longissimus (LM) and semitendinosus muscles. Eleven 5/8 Sahiwal x Angus, Hereford or Angus x Hereford crosses (seven heifers and four steers) were slaughtered. Alternate carcass sides were held at 22 +/- 3 degrees C for 6 h, then chilled at -1 degree C for 18 h. The opposite, control (C) sides were chilled at -1 degree C for 24 h. Samples were removed only from the LM at various times to determine calcium-dependent protease (CDP) and CDP inhibitor (INH) activity, cathepsins B and B + L activity, shear-force, sensory panel traits, myofibrillar fragmentation index (MFI) and sarcomere length. Results were analyzed by least squares procedures; our model included fixed effects of temperature, sex and their interaction. The LM temperature remained higher (P less than .01) for the HTC treatment at 3, 6, 9 and 12 h postmortem. In addition, HTC increased the rate of pH decline which resulted in pH differences (P less than .01) at 6, 9 and 12 h. At d 1, LM steaks had lower (P less than .05) shear forces (8.3 vs 9.6 kg) from HTC than C carcasses. At d 14, LM shear forces tended (P = .13) to be lower for HTC (6.9 kg) than for C (7.7 kg) carcasses. At, 3, 7 and 14 d, MFI for LM were greater (P less than .07) for the HTC steaks. However, by 6 h postmortem, INH activity had decreased (P less than .10) 35% in HTC samples, but no change had occurred in C samples (P less than .10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The present experiment was conducted to provide a validation of a previously developed model for online classification of US Select carcasses for LM tenderness based on visible and near-infrared (VISNIR) spectroscopy and to determine if the accuracy of VISNIR-based tenderness classification could be enhanced by making measurements after postmortem aging. Spectroscopy was conducted online, during carcass grading, at a large-scale commercial fed beef-processing facility, and the strip loin was obtained from the left side of US Select carcasses (n = 467). Slice shear force (SSF) was measured on fresh steaks at 2 and 14 d postmortem. Online VISNIR tenderness classes differed in mean SSF values at both 2 d (29.4 vs. 33.6 kg) and 14 d (18.0 vs. 21.2 kg) postmortem (P < 10(-7)). Online VISNIR tenderness classes differed in both the percentage of carcasses with LM SSF values greater than 40 kg at 2 d postmortem (5.1 vs. 21.0%; P < 10(-6)) and the percentage of carcasses with LM SSF values greater than 25 kg at 14 d postmortem (6.8 vs. 23.2%; P < 10(-5)). Whereas 15.0% of the carcasses sampled for this experiment had LM SSF values greater than 25 kg at 14 d postmortem, only 6.8% of the carcasses classified as tender by VISNIR had LM SSF values greater than 25 kg. All the carcasses sampled that had LM SSF values greater than 35 kg at 14 d postmortem were accurately classified as tough by VISNIR. Before measurement of SSF on d 14, VISNIR spectroscopy was conducted on the SSF steak. Tenderness classes based on d 14 VISNIR spectra differed both in mean SSF value at 14 d postmortem (17.7 vs. 21.6 kg; P < 10(-11)) and the percentage of carcasses with LM SSF values greater than 25 kg at 14 d postmortem (7.3 vs. 22.7%; P < 10(-5)). These data support our previous work showing that VISNIR spectroscopy can be used to classify US Select carcasses noninvasively for LM tenderness, and the results establish that this technology could also be applied to aged US Select strip loins. This technology would allow packing companies and other segments of the beef marketing chain to identify US Select carcasses or strip loins that excel in LM tenderness for use in branded beef programs.  相似文献   

6.
The present experiments were conducted to determine whether improved beef longissimus shear force methodology could be used to assess pork longissimus tenderness. Specifically, three experiments were conducted to: 1) determine the effect of belt grill (BG) cookery on repeatability of pork longissimus Warner-Bratzler shear force (WBSF), 2) compare the correlation of WBSF and slice shear force (SSF) with trained sensory panel tenderness ratings, and 3) estimate the repeatability of pork longissimus SSF for chops cooked with a BG. In Exp. 1 and 2, the longissimus was removed from the left side of each carcass (Exp. 1, n = 25; Exp. 2, n = 23) at 1 d postmortem and immediately frozen to maximize variation in tenderness. In Exp. 1, chops were cooked with either open-hearth electric broilers (OH) or BG, and WBSF was measured. Percentage of cooking loss was lower (P < 0.001) and less variable for chops cooked with a BG (23.2%; SD = 1.7%) vs. OH (27.6%; SD = 3.0%). Estimates of the repeatability of WBSF were similar for chops cooked with OH (0.61) and BG (0.59). Although significant (P < 0.05), differences in WBSF (4.1 vs. 3.9 kg) between cooking methods accounted for less than 5% of the total variation in WBSF. In Exp. 2, the correlation of SSF (r = -0.72; P < 0.001) with trained sensory panel tenderness ratings was slightly stronger than the correlation of WBSF (r = -0.66; P < 0.001) with trained sensory panel tenderness ratings, indicating that the two methods had a similar ability to predict tenderness ratings. In Exp. 3, duplicate samples from 372 carcasses at 2 and 10 d postmortem were obtained, cooked with BG, and SSF was determined. The repeatability of SSF was 0.90, which is comparable to repeatability estimates for beef and lamb. Use of BG cookery and SSF could facilitate the collection of accurate pork longissimus tenderness data. Time and labor savings associated with BG cookery and the SSF technique should help to decrease research costs.  相似文献   

7.
The myofibril fragmentation index (MFI) is strongly associated with indices of meat tenderness, such as Warner-Bratzler shear force and sensory tenderness. The MFI is normally determined on fresh muscle. It is not known whether this index can be determined on frozen muscle. The objective of this experiment was, therefore, to determine whether there is a difference between MFI values of fresh and frozen lamb and pork longissimus. To compare the effect of freezing on MFI, longissimus samples were obtained from eight lamb carcasses at 1, 3, and 15 d postmortem and longissimus samples were obtained from 12 pork carcasses at 3 d postmortem. For each sample, MFI was conducted on both fresh muscle and snap-frozen muscle (frozen in liquid nitrogen and stored 23 to 26 d at -70 degrees C). The R2 between MFI of fresh and frozen muscle was 0.94 and 0.92 for lamb and pork longissimus, respectively. The differences between fresh and frozen MFI were not significant for either species (P > 0.05). These results indicate that it is not necessary to determine MFI on fresh muscle.  相似文献   

8.
Dietary administration of 4 ppm of the beta-agonist L-644,969 (Merck Sharpe and Dohme Research Laboratories) to finishing lambs induced a decrease (10 to 14%, P less than .05) in extractable calpain I activity in the longissimus muscle (LD) at death (d 0). At 4 d postmortem (d 4), extractable calpain I levels in the LD of both control and treated lambs were reduced (P less than .001) from those present at d 0, but the extractable activity in the LD was reduced to a greater extent in control than in treated lambs. Calpain II activity was increased 42% (P less than .005) in LD of treated lambs; however, no significant differences were observed between d 0 and d 4 calpain II activity within treated or control LD samples (P greater than .1). Calpastatin activity was higher in the LD of treated lambs (74% on d 0, P less than .001 and 430% on d 4, P less than .001) than in the LD of control lambs. Measurable cathepsin B activity was decreased (29% on d 0, P less than .05) and measurable cathepsin H activity was increased (10% on d 0, P less than .05 and 10% on d 4, P less than .05) in the LD of treated lambs compared with controls. On d 2, 4 and 6 postmortem, degradation in myofibrils isolated from the LD was lower for treated than for control lambs. Warner-Bratzler shear values for loin chops from treated lambs were higher on both d 3 (111%) and 6 (108%) postmortem than for chops from control lambs (P less than .001). L-644,969-induced decreases in muscle proteolytic capacity may limit postmortem myofibril degradation and contribute to the reduced tenderness observed. This decreased proteolytic capacity may contribute to increased muscularity of L-644,969-treated lambs.  相似文献   

9.
The present experiment was conducted to provide a large-scale objective comparison of pork LM tenderness and other meat quality traits among packing plants that differ in stunning method and carcass chilling rate. For each of 2 replicates, pigs were sourced from a single barn of a commercial finishing operation that fed pigs from a single terminal crossbred line. On each day, 3 trucks were loaded, with each of those trucks delivering the pigs to a different plant. Plant A used CO(2) stunning and conventional spray chilling; Plant B used CO(2) stunning and blast chilling; and Plant C used electrical stunning and blast chilling. The boneless, vacuum-packaged loin was obtained from the left side of each carcass (n = 597; 100 · plant(-1) · replicate(-1)). As designed, HCW, LM depth, and LM intramuscular fat percentage did not differ among plants (P > 0.05). By 1.67 h postmortem (1 h after the carcasses exited the harvest floor), the average deep LM temperature was >10°C warmer for Plant A than Plants B and C (32.1°C, 21.6°C, and 19.3°C, for Plants A, B, and C, respectively) and deep LM temperature continued to be >10°C warmer for Plant A until 4.17 h or 6.33 h postmortem than for Plants C and B, respectively. Both plants that used blast chilling produced loins with greater LM slice shear force at 15 d postmortem than did the plant that used conventional spray chilling (P < 0.0001). The frequency of loins with excessively high (>25 kg) LM slice shear force values was greater for Plant B than Plant A (14.7% vs. 1%; P < 0.01). Among all the traits studied, including visual and instrumental evaluations of LM color, ultimate pH, marbling score, and lean color stability, the only other difference between Plants A and B was that purge loss during 13 d (from d 1 to 14) of vacuum-packaged storage was greater for Plant B (P < 0.05). That is, with this sample of pigs and CO(2) stunning, no loin quality advantages were detected for blast chilling. Regardless of chilling method, CO(2) stunning resulted in darker LM lean color and greater LM water-holding capacity than did electrical stunning (P < 0.05). This research shows that differences in chilling systems among pork packing plants can have a strong influence on loin chop tenderness.  相似文献   

10.
Effects of genotype (GEN) and implant program (IMP) on LM and gluteus muscle (GM) tenderization were investigated using crossbred steer (n = 185) and heifer (n = 158) calves. The 3-marker GeneSTAR Tenderness panel [CAST (calpastatin), CAPN1 316 (μ-calpain), and CAPN1 4751 (μ-calpain)] was used to determine the GEN of each animal (reported as total number of favorable alleles, 0 through 6). Calves were randomly assigned to 1 of 2 IMP, conventional (CNV) or delayed. Cattle in the CNV group were implanted at the beginning of the finishing period with Revalor-IS or Revalor-IH (Intervet Inc., Millsboro, DE), and then reimplanted 59 d later with Revalor-S or Revalor-H (Intervet Inc.). Calves in the delayed group received a single terminal implant (Revalor-S or Revalor-H) administered 45 d after initiation of the finishing period. Warner-Bratzler shear force (WBSF) was measured on LM and GM steaks at 3, 7, 14, 21, and 28 d postmortem. No interactions between the main effects of sex, IMP, or GEN were detected (P > 0.05) for WBSF. An IMP × postmortem aging (age) interaction was detected (P < 0.05) for LM and GM WBSF. For both muscles, steaks from CNV cattle had WBSF values that were approximately 0.2 kg greater (P < 0.05) than the values for steaks from delayed animals, but only during the early postmortem period (3 to 7 d). A linear effect of GEN on WBSF was detected (P < 0.05) for LM and GM steaks. Within each muscle, steaks from cattle with 6 favorable alleles had WBSF values 0.33 kg less than the values for steaks from cattle with 1 favorable allele. The GEN × age interaction was not significant for LM (P = 0.14) or GM (P = 0.20), but a numerical trend was observed for the effect of GEN on WBSF to diminish as age increased. To investigate how genetic markers could be interfaced with current beef carcass quality grading, cattle were sorted into 2 gene marker groups (GMG), ≤3 vs. ≥4 favorable alleles. For both muscles, GMG was effective only at identifying tenderness differences within the Select grade. When aged ≤14 d, Select LM steaks from cattle with ≥4 alleles had smaller (P < 0.05) WBSF values than did LM steaks from animals with ≤3 alleles. Preslaughter factors (sex, IMP, and GMG) controlled in the present study each accounted for less than 7% of the explained variation in tenderness of the test population. Results from this study suggest that the 3 GeneSTAR Tenderness markers were associated with small differences (0.33 kg) in WBSF and may be useful for increasing the consistency of Select beef, but these specific markers accounted for only a minor amount of variation in beef tenderness.  相似文献   

11.
The use of vitamin D3 to improve beef tenderness   总被引:7,自引:0,他引:7  
An experiment was designed to test the hypothesis that short-term oral administration of dietary vitamin D3 to beef cattle before slaughter would increase beef tenderness through greater calcium-activated calpain activity in postmortem aged skeletal muscle. Thirty continental crossbred steers were allotted randomly to three treatment groups housed in one pen. One group served as a control; two other groups were administered boluses with either 5 x 10(6) or 7.5 x 10(6) IU of vitamin D3 daily for 9 d. Cattle were slaughtered 1 d later. The longissimus lumborum was excised from each carcass 72 h postmortem and steaks removed at 3, 7, 14, and 21 d postmortem. The semimembranosus muscle (top round) was excised from each carcass 72 h postmortem and steaks removed at 7, 14, and 21 d postmortem. Blood plasma calcium concentration of cattle treated with 5 or 7.5 x 10(6) IU of vitamin D3 was higher (P < .05) than that of controls. Strip loin and top loin steaks from cattle fed supplemental doses of vitamin D3 had lower (P < .05) Warner-Bratzler (W-B) shear values at 14 d postmortem but were not significantly different from controls at 3, 7, or 21 d (strip loins) or 7 or 21 d (top rounds). No significant difference in strip loin steak tenderness was observed by sensory panel at 14 d postmortem (P < .17) between steaks from control and vitamin D3-treated steers. At 14 d postmortem, strip loin and top round steaks from cattle fed 5 x 10(6) IU of vitamin D3, but not from those given 7.5 x 10(6) IU, showed more proteolysis (P < .05) than did steaks from control cattle, based on Western blotting analysis. Therefore, the use of supplemental dietary vitamin D3 given daily for 9 d before slaughter did improve tenderness (lower W-B shear values) of 14-d postmortem aged beef. Increased proteolysis seems to be the mechanism of tenderization.  相似文献   

12.
Calpastatin (CAST) is a naturally occurring protein that inhibits the normal tenderization of meat as it ages postmortem. A SNP was identified in the CAST gene (a G to C substitution) and genotyped on crossbred commercially fed heifers (n = 163), steers (n = 226), and bulls (n = 61) from beef feedlots, and steers (n = 178) from a University of Guelph feeding trial. The association of the CAST SNP with carcass and meat quality traits was studied. Carcass traits included fat, lean, and bone yield; grade fat; LM area; and HCW. Meat quality traits included marbling grade; i.m. fat content of LM; tenderness evaluation of LM (Warner-Bratzler shear force) at 2, 7, 14, and 21 d of postmortem aging; and tenderness evaluation of semitendinosus muscle at 7 d of postmortem aging. The mixed model used in the analyses included fixed effects of CAST genotype, sex, slaughter group, and breed composition (linear covariate); sire was a random effect. For the analysis of shear force, i.m. fat content of LM was also included in the model as a linear covariate. Shear force measures were analyzed within days of postmortem aging and by repeated measures analysis. The CAST SNP allele C was more frequent (63%) in the crossbred population than allele G. The CAST SNP was associated with shear force across days of postmortem aging (P = 0.005); genotype CC yielded beef that was more tender than GG (-0.32 kg +/- 0.13), and CG had intermediate tenderness. The corresponding average allele substitution effect (G to C substitution) was also highly significant (-0.15 +/- 0.05 kg, P = 0.002). A lower percentage of unacceptably tough steaks (shear force > 5.7 kg) at 2 and 7 d postmortem was associated with an increasing number of C alleles (P < or = 0.05). At 7 d postmortem, the percentage of unacceptably tough steaks decreased by 24 and 35%, respectively, for animals carrying 1 and 2 copies of the C allele relative to animals with no C alleles. However, genotype CC had a greater fat yield (+1.44 +/- 0.56%; P = 0.037) than genotype GG, with a corresponding allele substitution effect of 0.67 +/- 0.27% (P = 0.015). Therefore, the CAST SNP allele C was associated with increased LM tenderness across days of postmortem aging and, importantly for the beef industry, had a significant reduction in the percentage of steaks rated unacceptably tough by consumers based on an assumed threshold level.  相似文献   

13.
14.
Effects of ractopamine hydrochloride (RAC) supplementation and postmortem aging on palatability of beef from steers differing in biological type were evaluated using LM samples from British, Continental crossbred, and Brahman crossbred calf-fed steers (n = 98/type). Equal numbers of steers within each type were assigned to treatments of 0 or 200 mg.steer(-1).d(-1) of RAC fed during the final 28 d of the finishing period. Warner-Bratzler shear force (WBSF) was measured at 3, 7, 14, and 21 d postmortem, and trained sensory panel (TP) evaluation was conducted using LM samples aged for 14 d postmortem. A RAC x type interaction (P = 0.006) was detected for WBSF. Within each type, steers fed RAC produced steaks with greater (P < 0.05) WBSF values than steaks from control steers; however, the magnitude of the effect of RAC on WBSF was more pronounced among Brahman cross-breds (5.53 vs. 4.96 +/- 0.10 kg) than among Continental crossbred (4.16 vs. 3.96 +/- 0.10 kg) and British steers (4.10 vs. 3.75 +/- 0.10 kg). The effect of RAC on WBSF, though diminished slightly by aging (mean WBSF difference: 3 d = 0.49 kg; 21 d = 0.24 kg), was not completely mitigated by 21 d of postmortem storage (P(RAC x AGE) = 0.16). Steers fed RAC produced steaks that received lower (P < 0.05) TP ratings for tenderness (8.09 vs. 8.95 +/- 0.18) and juiciness (7.41 vs. 8.07 +/- 0.16 kg), along with slightly lower (P = 0.06) ratings for beef flavor (6.67 vs. 6.93 +/- 0.10 kg), compared with steaks from unsupplemented steers, regardless of biological type. Among the 3 biological types, Brahman crossbred cattle produced steaks with the greatest (P < 0.05) WBSF values at each aging period; WBSF values for steaks from British and Continental type steers did not differ (P > 0.05) at any aging time. Sensory panel ratings of tenderness, juiciness, and beef flavor were greatest (P < 0.05) for steaks from British steers, and least (P < 0.05) for steaks produced by Brahman-type steers. Results from this study suggest that RAC supplementation slightly decreases LM tenderness (WBSF and TP) of British, Continental crossbred, and Brahman cross-bred steers, and that the effect of RAC on WBSF may be more pronounced in steaks from Brahman crossbred cattle than among stenks from Continental type or British steers.  相似文献   

15.
The objective of this investigation was to determine the effect of calcium chloride (CaCl2) injection on Warner-Bratzler shear force (WBS), sensory panel ratings, and collagen traits of mature cow beef. Within 30 min of exsanguination, subprimals (top round, TR; top sirloin, TS; strip loin, SL) from alternate sides of the carcass were injected with a .3 M CaCl2 solution (10% of the subprimal weight) and aged for 1, 7, or 14 d. The corresponding cold-boned cuts of the other side served as a control. Injecting CaCl2 eliminated the requirement for extended postmortem storage, as indicated by d 1 WBS. During the 14-d aging period, WBS of noninjected cuts decreased by 2.59 kg, whereas WBS of CaCl2-injected samples decreased by only .35 kg. Compared with control cuts, CaCl2 injection improved (P less than .05) d-14 WBS of steaks from SL, TS, and TR by 41.1, 40.1, and 15.3%, respectively. Additionally, CaCl2-injected subprimals exhibited higher (P less than .05) sensory panel tenderness ratings, lower (P less than .05) amounts of detectable connective tissue, and shorter (P less than .05) sarcomere lengths. No differences (P greater than .05) were observed in any quantitative collagen traits between CaCl2-injected and control cuts. These results indicate that CaCl2 injection improved ultimate tenderness and sensory ratings of meat from mature cow cuts.  相似文献   

16.
The objective of this study was to compare carcass characteristics of a newly introduced breed, the Waguli (Wagyu x Tuli), with the carcass characteristics of the Brahman breed. Brahman cattle are used extensively in the Southwest of the United States because of their tolerance to adverse environmental conditions. However, Brahman carcasses are discounted according to the height of their humps because of meat tenderness issues. The Waguli was developed in an attempt to obtain a breed that retained the heat tolerance of the Brahman but had meat quality attributes similar to the Wagyu. Twenty-four animals were used. Six steers from each breed were fed a 94% concentrate diet and 6 steers from each breed were fed an 86% concentrate diet. Eight steers, 2 from each group, were harvested after 128 d, after 142 d, and after 156 d on feed. Waguli steers had larger LM, greater backfat thickness, greater marbling scores, and greater quality grades than the Brahman steers (P < 0.05). The Japanese Wagyu breed is well known for its highly marbled and tender meat, and these traits are also present in the Waguli. The Waguli had significantly lower Warner-Bratzler shear force values than the Brahman steers after 7 and 10 d of postmortem aging (P < 0.05); this difference decreased after 14 d postmortem (P = 0.2), when tenderness of the slower aging Brahman had increased to acceptable levels. Toughness of the Brahman has been associated with high levels of calpastatin in Brahman muscle, and the Waguli LM had significantly less calpastatin activity (P = 0.02) at 0 h postmortem than the Brahman LM. At 0-h postmortem, the total LM calpain activity did not differ between the Brahman and Waguli (P = 0.57). Neither diet nor days on feed had any significant effect on the 0-h postmortem calpain or at 0-h postmortem calpastatin activity, nor an effect on Warner-Bratzler shear-force values. In conclusion, LM muscle from the Waguli steers had a high degree of marbling, lower shear force values, and low calpastatin activity, all of which are related to more tender meat.  相似文献   

17.
The objective of this study was to determine the effect of sampling methodology on the relationship between longissimus tenderness and measures of biochemical meat traits. Sampling methodology included measurements of sarcomere length, collagen concentration, and postmortem desmin proteolysis on raw samples and measurements of these same traits on the same cooked meat used for shear force measurement. Twenty crossbred steers and 20 crossbred barrows were used for these studies. The beef longissimus thoracis were vacuum-packaged, stored at 2 degrees C until 14 d postmortem, then frozen and stored at -30 degrees C. The pork longissimus thoracis et lumborum were vacuum-packaged, stored at 2 degrees C until 7 d postmortem, then frozen and stored at -30 degrees C. Trained sensory panel tenderness rating ranged from 3.1 to 7.6 for beef and 4.1 to 7.4 for pork. The coefficient of variation was lower for sarcomere length than for all other traits. Simple correlation coefficients between measurements on raw and cooked samples were 0.58 (beef) and 0.11 (pork) for sarcomere length, 0.66 (beef) and 0.59 (pork) for collagen, and 0.74 (beef) and 0.76 (pork) for desmin degradation. Simple correlation coefficients between biochemical traits and measures of tenderness (Warner-Bratzler shear force and trained sensory tenderness rating) were higher or not different for cooked compared to raw samples. Correlation coefficients between biochemical traits and tenderness rating were 0.38 (raw) and 0.22 (cooked) for sarcomere length, -0.12 (raw) and -0.45 (cooked) for collagen, and 0.48 (raw) and 0.80 (cooked) for desmin degradation in beef longissimus and 0.14 (raw) and 0.15 (cooked) for sarcomere length, -0.38 (raw) and -0.33 (cooked) for collagen, and 0.53 (raw) and 0.67 (cooked) for desmin degradation in pork longissimus. The coefficients of determination for explaining variation in tenderness rating using sarcomere length, collagen concentration, and desmin degradation for raw and cooked samples were 0.43 and 0.73 (beef) and 0.48 and 0.57 (pork), respectively. This study indicates that measurements of biochemical traits on the same cooked meat as used for shear force determination account for more of the variation in measures of tenderness than biochemical measurements made on a separate raw sample.  相似文献   

18.
The present experiments were conducted to field test a system optimized for online prediction of beef LM tenderness based on visible and near-infrared (VISNIR) spectroscopy and to develop and validate a model for prediction of tenderness that would be unbiased by normal variation in bloom time before application of VISNIR. For both Exp. 1 and 2, slice shear force (SSF) was measured on fresh (never frozen) steaks at 14 d postmortem. Carcasses with VISNIR-predicted SSF ≤15 kg were classified as VISNIR predicted tender and carcasses with VISNIR-predicted SSF >15 kg were classified as VISNIR not predicted tender. In Exp. 1, spectroscopy was conducted online, during carcass grading, at 3 large-scale commercial fed-beef processing facilities. Each carcass (n = 1,155) was evaluated immediately after ribbing and again when the carcass was graded. For model development and validation, carcasses were blocked by plant and observed SSF. One-half of the carcasses (n = 579) were assigned to a calibration data set, which was used to develop regression equations, and one-half of the carcasses (n = 576) were assigned to a prediction data set, which was used to validate the regression equations. Carcasses predicted tender by VISNIR spectroscopy had smaller (P < 10(-19)) mean LM SSF values at 14 d postmortem in the calibration (13.9 vs. 16.5 kg) and prediction (13.8 vs. 16.4 kg) data sets than did carcasses not predicted tender by VISNIR spectroscopy. Relative to carcasses not predicted tender by VISNIR, a decreased percentage of carcasses predicted tender by VISNIR had LM SSF >25 kg in the calibration (2.0 vs. 7.8%) and prediction (0.8 vs. 8.0%) data sets. In Exp. 2, carcasses (n = 4,204) were evaluated with VISNIR online at 6 commercial fed-beef processing facilities on 38 production days. The carcasses predicted tender by VISNIR spectroscopy had decreased mean LM SSF values at 14 d postmortem (16.3 vs. 19.9 kg; P < 10(-87)), longer sarcomere lengths (1.77 vs. 1.72 μm; P < 10(-10)), and a greater percentage of desmin degraded (42 vs. 34%; P < 10(-5)) by 14 d postmortem. Relative to carcasses not predicted tender by VISNIR, a decreased percentage of carcasses predicted tender by VISNIR had LM SSF >25 kg (4.9 vs. 21.3%). The present experiments resulted in development and independent validation of a robust method to noninvasively predict LM tenderness of grain-fed beef carcasses. This technology could facilitate tenderness-based beef merchandising systems.  相似文献   

19.
Jersey cattle are known for producing carcasses with a greater amount of marbling, but they require more days on feed to achieve acceptable market weights compared with other breeds. The objective of this study was to evaluate the effect of dietary forage (12 vs. 24% sudangrass:alfalfa hay, DM basis) in steam-flaked, corn-based finishing diets on carcass characteristics, beef palatability, and retail color stability of steaks from Jersey beef compared with conventionally fed commodity beef strip loins (COM) of identified quality (Choice(-) and Select(+)). Jersey steers (n = 77) were blocked by BW and randomly assigned to 1 of the following treatments for a 383-d trial period: Jersey low 12% (JL; n = 38) or Jersey high 24% (JH; n = 39) forage (DM basis). A comparison group was selected from conventionally fed cattle on the same day of slaughter as the Jersey treatments, and strip loins from USDA Select(+) (COM; n = 20) and Choice(-) (COM; n = 20) were removed for data analysis. Seventy-two hours postmortem, strip loins were removed, vacuum-packaged, and aged at 3°C for 18 d postmortem. After the aging period, steaks from the LM were sliced, vacuum-packaged, and frozen (-20°C) until analyzed. Jersey steaks had reduced (P < 0.05) Warner-Bratzler shear force values compared with COM steaks. Trained sensory panelists rated JL greater (P < 0.05) for initial and sustained tenderness and initial juiciness than COM, whereas JH was intermediate. As expected, marbling was greater (P < 0.05) for both JL and JH compared with COM, and trained sensory panel sustained juiciness, beef flavor intensity, and overall acceptability scores were greater (P < 0.05) for both JL and JH compared with COM; however, no differences (P = 0.14) were reported for consumer tenderness and flavor. Objective color (L*, a*, b*) measurements decreased (P < 0.05) over time across treatments. There were no differences among treatments for lightness (L*); however, overall during retail display JL were less (P < 0.05) red (a*) and yellow (b*) than JH and COM. Subjective color scores indicated both JL and JH were less red (P < 0.05) than COM. Steaks from Jersey were equal to and on some measurements more desirable than steaks from COM carcasses for both color stability and palatability. These results suggest that dietary forage level had minimal effects on carcass characteristics and beef palatability. However, feeding a low-forage diet decreases input cost and potentially results in a greater valued carcass. Finishing long-fed (383 d) Jersey steers can meet beef industry expectations with respect to quality grade.  相似文献   

20.
The objectives of this experiment were to determine the extent of variation in proteolysis, sarcomere length, and collagen content among pork muscles and the association of those factors with tenderness variation among muscles at 1 d postmortem. Twenty-three white composite barrows were slaughtered and carcasses (66 kg) were chilled at 0 degrees C for 24 h. At 1 d postmortem, the longissimus lumborum, biceps femoris, semimembranosus, semitendinosus, and triceps brachii, long head were dissected from one side of each carcass and frozen. Trained sensory panelists evaluated tenderness, amount of connective tissue, juiciness, and pork flavor intensity of grilled (70 degrees C) chops on 8-point scales. Raw chops were used for total collagen content, sarcomere length, and the extent of desmin proteolysis. Tenderness ratings were highest (P < .05) for semitendinosus (7.2) and triceps brachii (7.1), followed by longissimus lumborum (6.4) and semimembranosus (5.7) and were lowest (P < .05) for biceps femorus (4.0). The simple correlations between longissimus lumborum tenderness and the tenderness of other muscles were .54 (semimembranosus), .34 (semitendinosus), .36 (triceps branchii), and .17 (biceps femorus). Total collagen was highest (P < .05) for biceps femorus (7.1 mg/g muscle), followed by triceps branchii (6.0 mg/g) and semitendinosus (5.3 mg/g), and lowest for semimembranosus (4.5 mg/g) and longissimus lumborum (4.1 mg/g). Sarcomere length was longest (P < .05) for semitendinosus (2.5 microm) and triceps branchii (2.4 microm), followed by semimembranosus (1.8 microm), longissimus lumborum (1.8 microm), and biceps femorus (1.7 microm). Proteolysis of desmin was greatest (P < .05) in longissimus lumborum (39.3%), followed by semimembranosus (21.0%) and biceps femoris (18.5%), then semitendinosus (.2%) and triceps brachii (.2%). Multiple linear regression using total collagen, sarcomere length, and proteolysis accounted for 57% of the variation in tenderness rating among all samples. Piecewise linear regression was used to account for the interaction of sarcomere length with proteolysis and collagen. This analysis accounted for 72% of the variation in tenderness rating. Variation in collagen, proteolysis, and sarcomere length and the degree of their interaction with one another determine the tenderness of individual muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号