首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant-derived polyphenolic compounds have received much attention for their ability to sequester high-energy free radicals in a great variety of food-related and biological systems, protecting those systems from oxidative change. The ability of these compounds to scavenge free radicals has always been attributed to their phenolic functionality, from which a hydrogen atom can be easily abstracted. In this study, the cinnamates and the ubiquitous hydroxycinnamates were found to equally suppress the formation of oxidation products in wine exposed to the Fenton reaction (catalytic Fe(II) with hydrogen peroxide). Mechanistic investigations led to the unexpected discovery that the α,β-unsaturated side chain of cinnamic acids could efficiently trap 1-hydroxyethyl radicals, representing a newly discovered mode of antioxidant radical scavenging activity for these broadly occurring compounds in a food system. The proposed pathway is supported by prior fundamental studies with radiolytically generated radicals.  相似文献   

2.
A rapid method is described to prepare samples, separate and quantify phenolic lignin degradation products obtained from the alkaline cupric oxide oxidation of forest humus layers. The whole sample is treated with CuO-NaOH at 170°C to produce simple lignin-derived phenols, which are extracted with a commercially-available disposable column system. The extracted phenolic compounds are separated by reverse-phase high-performance liquid chromatography, based on the differential polarity of benzoic acids, aldehydes and cinnamic acids. Results from the oxidation of gymnosperm and angiosperm litter are presented.  相似文献   

3.
Calf thymus DNA was oxidized by various Fenton reagent systems [Fe(II)/H(2)O(2)] with or without ethylenediamine tetraacetic acid (EDTA) under different reaction conditions. Calf DNA was also oxidized by a modified Fenton reagent (Fe(III)/H(2)O(2)/ascorbic acid) with EDTA. Malonaldehyde (MA) formed from DNA was derivatized into 1-methyl hydrazine, which was subsequently analyzed by gas chromatography with a nitrogen-phosphorus detector. MA formation increased linearly with an increase of Fe(II) concentration. MA formation reached a plateau at nearly 2 mmol/L of Fe(II) with 0.5 mmol/L of H(2)O(2). Addition of EDTA increased MA formation from DNA nearly 5 times. When DNA was oxidized with various amount of ethanol, MA formation decreased with an increase of ethanol concentration, either with or without EDTA. The rate of inhibition was greater without EDTA than with EDTA. When DNA was oxidized by a modified Fenton reagent, MA formation linearly increased with the increase of DNA. Ascorbic acid alone produced some MA upon oxidation.  相似文献   

4.
2,4-Decadienal was heated under an inert atmosphere and in the presence of phenylalanine to investigate whether this secondary lipid oxidation product is a final product of lipid oxidation or it reacts with the amino acid. The results obtained showed that, in the presence of the alkadienal, the amino acid was degraded to styrene. This reaction was favored in dry systems at pH approximately 6 and in the absence of oxygen. If oxygen was present, the alkadienal was oxidized and the Strecker degradation of the amino acid was produced. The activation energy for the formation of styrene from phenylalanine was 150.4 kJ/mol. The reaction mechanism is suggested to be produced either by an electronic rearrangement of the imine produced between the aldehyde and the amino acid with the formation of styrene, 2-pentylpyridine, carbon dioxide, and hydrogen, or by Michael addition of the amino compound to the alkadienal followed by beta-elimination to produce the same compounds. Both reaction schemes were supported on the results obtained by studying both the degradation of phenylethylamine and phenylalanine methyl ester produced by 2,4-decadienal, and the formation of ethylbenzene in decadienal/phenylalanine reaction mixtures heated in the presence of platinum oxide. All these results suggest that, analogously to carbohydrates, certain lipid oxidation products may degrade appropriate amino acids to their corresponding vinylogous derivatives.  相似文献   

5.
Methyl linoleate oxidation in the presence of bovine serum albumin   总被引:1,自引:0,他引:1  
The oxidation of methyl linoleate (LMe) in the presence of bovine serum albumin (BSA) was studied to analyze both the processes involved when lipid oxidation occurs in the presence of proteins and the relative progression of the several reactions implicated. The disappearance of LMe, the formation of primary and secondary lipid oxidation products, the loss of essential amino acids, and the production of oxidized lipid/amino acid reaction products (OLAARPs) were studied as a function of incubation time. During the first steps of lipid oxidation, LMe was converted quantitatively to methyl linoleate hydroperoxides, which were very rapidly degraded to either secondary products of lipid oxidation or OLAARPs. No significant differences were identified in the major lipid oxidation products formed in incubations with or without proteins, indicating that mechanisms for formation of these compounds are similar in both cases. In addition, no significant differences were observed between the time-courses of formation of secondary oxidation products and OLAARPs, suggesting that hydroperoxide decomposition and OLAARP formation occur simultaneously when the lipid oxidation process takes place in the presence of proteins. Furthermore, OLAARP formation seems to be an unavoidable process that should be considered as a last step in the lipid peroxidation process.  相似文献   

6.
On the basis of observations from Vitis vinifera cv. Pinotage wines and experiments performed in model wine medium, a new chemical pathway responsible for the formation of anthocyanin-vinylphenol adducts in red wines is described. Until now, these pigments have been considered to be reaction products of anthocyanins and vinylphenols, the latter being generated during fermentation by enzymatic decarboxylation of the respective cinnamic acids. The mechanism of the novel pathway, involving intact hydroxycinnamic acid and anthocyanin, is explained. Only cinnamic acids with electron-donating substituents on the aromatic ring, such as coumaric acid, ferulic acid, caffeic acid, and sinapic acid, undergo this conversion, as they stabilize an intermediately formed carbenium ion. Decarboxylation and oxidation of the pyran moieties are the final steps in the generation of the corresponding 4-vinylphenol, 4-vinylguaiacol, 4-vinylcatechol, and 4-vinylsyringol adducts of anthocyanins in red wine.  相似文献   

7.
The reaction of methyl 9,10-epoxy-13-oxo-11(E)-octadecenoate, methyl 12,13-epoxy-9-oxo-11(E)-octadecenoate, 4,5(E)-epoxy-2(E)-heptenal, and 4,5(E)-epoxy-2(E)-decenal with phenylalanine in acetonitrile-water (2:1, 1:1, and 1:2) at 80 degrees C and at different pHs and carbonyl compound/amino acid ratios was investigated both to determine if epoxyoxoene fatty esters were able to produce the Strecker-type degradation of the amino acid and to study the relative ability of oxidized long-chain fatty esters and short chain aldehydes with identical functional systems to degrade amino acids. The studied epoxyoxoene fatty esters degraded phenylalanine to phenylacetaldehyde. The mechanism of the reaction was analogous to that described for epoxyalkenals and is suggested to be produced through the corresponding imine, which is then decarboxylated and hydrolyzed. This reaction also produced a conjugated hydroxylamine, which was the origin of the long-chain pyridine-containing fatty ester isolated in the reaction and characterized as methyl 8-(6-pentylpyridin-2-yl)octanoate. Epoxyoxoene fatty esters and epoxyalkenals exhibited a similar reactivity for producing phenylacetaldehyde, therefore suggesting that nonvolatile lipid oxidation products, which are produced to a greater extent than volatile products, should be considered for determining the overall contribution of lipids to Strecker degradation of amino acids produced during nonenzymatic browning. In addition, the obtained data confirm that, analogously to carbohydrates, lipid oxidation products are also able to produce the Strecker degradation of amino acids.  相似文献   

8.
Quinoid groups of humic acids from various sources (soil, peat, brown and oxidized coals) can undergo reversible redox transformations, this being a fundamental property of this class of natural compounds.Kinetic oxidation curves for reduced humic acids indicate the presence of various types of quinoid groups.The specificity of a previously suggested technique for determining quinones in humic acids has been corroborated. Exhaustive carbonyl reduction by sodium borohydride combined with reductometric methods for determining quinones in alkaline media make possible a better estimation of the ketone content in humic acids.When humic acids are reduced in an acid solution of tin chloride, rigorous conditions (4 h, 120°C, strong acid media) lead to an irreversible conversion of part of the quinone carbonyls and, as a result, the reaction proceeds nonstoichiometrically.  相似文献   

9.
Polyphenols have recently attracted much attention as potent antioxidants and related bioactive substances. These potent antioxidative polyphenols are very oxidizable due to their chemical properties, and their oxidation products must accumulate in the oxidizing foods when they are contained as the active ingredients. In this investigation, 30 polyphenols and related phenolics were oxidized with oxygen in the presence of a catalytic amount of Fe ions. Piceatannol, catechin, epicatechin, hydroxytyrosol, carnosol, and carnosic acid were oxidized very quickly. Sinapic acid, caffeic acid, chlorogenic acid, rosmarinic acid, gallic acid, propyl gallate, α-tocopherol, quercetin, and nordihydroguaiaretic acid were moderately oxidized. Protocatechuic acid, syringic acid, taxifolin, resveratrol, gentisic acid, secoisolariciresinol, and ellagic acid were oxidized for 19-20 days; however, their oxidation was very slow and did not complete. The other phenolics were not oxidized. The obtained oxidation products were next subjected to a lipoxygenase inhibition assay and the results compared to those of the corresponding phenols. Very interestingly, the oxidation product from resveratrol showed a high inhibitory activity, whereas resveratrol itself had no activity and its oxidation efficiency was low. To clarify the inhibition principle of the oxidation product, an LC-MS analysis was carried out on the oxidation product. The analytical results showed that they are the oligomeric and degraded compounds of resveratrol. Among them, the structures of three dimeric compounds were successfully identified, and their activity data clarified that the closed ring dimers were potent lipoxygenase inhibitors, whereas the opened ring dimer was not. It should be noted that resveratrol had almost no lipoxygenase inhibitory activity, contrary to some researchers' findings.  相似文献   

10.
Protein oxidation in meat is considered to decrease meat tenderness due to protein disulfide cross-link formation of thiol-containing amino acid residues. An LC-MS method for detection of thiol-quinone adducts (RS-QH(2)) in myofibrillar proteins was developed to investigate the interaction between phenols, as protective antioxidants, and proteins from meat under oxidative conditions using aqueous solutions of (i) cysteine (Cys), (ii) glutathione (GSH), (iii) bovine serum albumin (BSA), or (iv) a myofibrillar protein isolate (MPI). The aqueous solutions were incubated at room temperature (30 min) with 4-methyl-1,2-benzoquinone (4MBQ) prepared from oxidation of 4-methylcatechol (4MC) by periodate resin or incubated at room temperature (5 h) with 4MC and Fe(II)/H(2)O(2). GSH, BSA, and MPI were hydrolyzed (6 N HCl, 110 °C, 22 h) after incubation, and the cysteine-quinone adduct, Cys-QH(2) (m/z 244.2) was identified according to UV and mass spectra after separation on an RP-C18 column. The thiol-quinone adduct was present in all thiol systems after incubation with 4MBQ or 4MC oxidized by Fe(II)/H(2)O(2). Direct reaction with 4MBQ resulted in each case in increased Cys-QH(2) formation compared to simultaneous oxidation of thiol source and 4MC with Fe(II)/H(2)O(2). The covalent bonds between quinones and thiol groups may act as a potential antioxidant by inhibiting disulfide protein cross-link formation.  相似文献   

11.
Strecker degradation is one of the most important reactions leading to final aroma compounds in the Maillard reaction. In an attempt to clarify whether lipid oxidation products may be contributing to the Strecker degradation of amino acids, this study analyzes the reaction of 4,5-epoxy-2-alkenals with phenylalanine. In addition to N-substituted 2-(1-hydroxyalkyl)pyrroles and N-substituted pyrroles, which are major products of the reaction, the formation of both the Strecker aldehyde phenylacetaldehyde and 2-alkylpyridines was also observed. The aldehyde, which was produced at 37 degrees C-as could be determined by forming its corresponding thiazolidine with cysteamine-and pH 6-7, was not produced when the amino acid was esterified. This aldehyde is suggested to be produced through imine formation, which is then decarboxylated and hydrolyzed. This reaction also produces a hydroxyl amino derivative, which is the origin of the 2-alkylpyridines identified. All these data indicate that Strecker-type degradation of amino acids is produced at 37 degrees C by some lipid oxidation products. This is a new proof of the interrelations between lipid oxidation and Maillard reaction, which are able to produce common products by analogue mechanisms.  相似文献   

12.
As a part of a research project on the elucidation of the chain-breaking antioxidation mechanism of natural phenols in food components, caffeic acid, a polyphenolic acid widely distributed in edible plants, was investigated. The identification and time course analysis of the antioxidation reaction products from methyl caffeate were carried out in the ethyl linoleate oxidation system. The antioxidation reaction produced a quinone derivative of methyl caffeate as an antioxidation product during the initial stage, which was identified by (13)C NMR. The quinone, however, was not the final product, and a further reaction occurred to produce several new peroxides. The isolation and structure determination of the peroxides revealed that they had tricyclic structures, which consisted of ethyl linoleate, methyl caffeate, and molecular oxygen. On the basis of the formation pathway of these products, an antioxidation reaction mechanism of methyl caffeate, including the redox reaction of the caffeate and Diels-Alder reaction of the produced peroxides, was proposed.  相似文献   

13.
The oxidation of methyl linoleate (LMe) and methyl linolenate (LnMe) in the presence of bovine serum albumin (BSA) in the dark at 60 degrees C was studied to analyze the role of the type of fatty acid and the protein/lipid ratio on the relative progression of the processes involved when lipid oxidation occurs in the presence of proteins. The disappearance of the fatty acid, the formation of primary and secondary products of lipid peroxidation, the loss of amino acid residues, the production of oxidized lipid/amino acid reaction products, and the development of color and fluorescence were studied as a function of incubation time in protein/lipid samples at 10:1, 6:1, and 3:1 w/w ratios. The incubation of LMe and LnMe in the presence of BSA at 60 degrees C rapidly produced lipid peroxidation and protein damage. Although reaction rates were much faster for LnMe than for LMe, both fatty acids had similar behaviors, and LnMe seemed to be only slightly more reactive than LMe for BSA by producing a higher increase of protein pyrroles in the protein and the development of increased browning and fluorescence. The protein/lipid ratio also influenced the relative progress of the reactions implicated. Thus, a lower protein/lipid ratio increased sample oxidation and protein damage. This also produced an increased browning, in accordance with the mechanisms proposed for browning production by oxidized lipid/protein reactions. On the contrary, browning of extracted lipids increased at higher protein/lipid ratios. This opposite tendency allowed evaluation of the overall significance of the different browning processes implicated in the final colors observed, concluding that color changes observed in BSA/lipid samples were mostly a consequence of oxidized lipid/protein reactions.  相似文献   

14.
Betanidin is a basic betacyanin with a 5,6-dihydroxyl moiety which causes its high antioxidant activity. For the purpose of structural study, the enzymatic oxidation of betanidin and betanin (5-O-glucosylated betanidin), followed by chromatographic separation of the oxidation products with spectrophotometric and mass spectrometric detection (LC-DAD-MS/MS) was performed. Within the pH 4-8 range, two main oxidation peaks of betanidin were observed, betanidin quinonoid (possibly betanidin o-quinone) and 2-decarboxy-2,3-dehydrobetanidin, whereas at pH 3 only dehydrogenated and decarboxylated derivatives were detected, suggesting different stabilities of the products at different pH values. The presence of two prominent oxidation products, 2-decarboxy-2,3-dehydrobetanidin and 2,17-bidecarboxy-2,3-dehydrobetanidin, at pH 3 indicates their generation via two possible reaction routes with two different quinonoid intermediates: dopachrome derivative and quinone methide. Both reaction paths lead to the decarboxylative dehydrogenation of betanidin. Subsequent oxidation and rearrangement of the conjugated chromophoric system results in the formation of 14,15-dehydrogenated derivatives. Betanin is oxidized with generation of a quinone methide intermediate, which rearranges to 2,3-dehydro- or neoderivatives. The products of enzymatic oxidation of betacyanins thus formed are derivatives of 5,6-dihydroxyindole and related structures known as the key intermediates in melanogenesis.  相似文献   

15.
The objective of this study was to investigate the influence of the two antioxidants, ascorbic acid and (+)catechin, on the oxidation of 2'-deoxyguanosine (dG), using an iron-mediated Fenton reaction. The oxidation products 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8,5'-cyclo-2'-deoxyguanosine, together with the secondary oxidation products guanidinohydantoin and dehydro-guanidinohydantoin, were identified and quantified through the use of an LC-MS/MS system. The results obtained showed that catechin inhibited the oxidation better than ascorbic acid did, indicating that the chelating ability of catechin rather than the radical scavenging mechanism alone is vital for the observed antioxidative efficiency. The correlation between the different oxidation products was found to be quite low, primarily because of the instability of 8-oxodG, making it prone to further oxidation. This led to apparent anti- and pro-oxidative results being obtained, emphasizing the potential problems in evaluating oxidative stress, by use of a single marker.  相似文献   

16.
To determine the antioxidant mechanism of food phenolics against the oxidation of food components, the reaction of carnosic acid, an antioxidative constituent of the popular herbs sage and rosemary, was investigated in the presence of ethyl linoleate and the radical oxidation initiator 2,2'-azobis(2,4-dimethylvaleronitrile). During this process, carnosic acid was oxidized to an o-quinone and a hydroxy p-quinone, the chemical structures of which were confirmed by physical and chemical techniques. From a quantitative time course analysis of the production of these quinones, an antioxidant mechanism of carnosic acid is proposed, consisting of the oxidative coupling reaction with the peroxyl radical at the 12- or 14-position of carnosic acid and subsequent degradation reactions.  相似文献   

17.
G. Ogner  T. Gr∅nneberg 《Geoderma》1977,19(3):237-245
Methylated fulvic and humic acids were oxidized by permanganate in chloroform in the presence of a cyclic polyether, 18-crown-6. The total amount of oxidation products identified was 6.5% for fulvic acid and 6.7% for humic acid. About 46% of the oxidation products found from both fractions were dicarboxylic acids (15 compounds), the rest were benzenecarboxylic acids and their methoxyl derivatives (15 compounds). Alkanes and fatty acids were also found.Nonandioic acid and 3,4-dimethoxy-benzenecarboxylic acid are found in almost equal amounts. Each accounts for 1.3% of the starting material, and together they represent 40% of the oxidation products. 3,4-Dimethoxy-benzoic acid and 4-methoxy-benzoic acid are believed to result from the oxidation of terminal groups in the humic polymer.Proton resonance spectra show that about 25% of the aliphatic protons are part of methylene chains. The most prominent chain lengths consist of 6–8 methylene groups as shown by the dicarboxylic acids formed by oxidation.  相似文献   

18.
The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids in a 10% oil-in-water emulsion. The emulsifiers tested were Tween 80 and Citrem, and the phenolic compounds were naringenin, rutin, caffeic acid, and coumaric acid. Lipid oxidation was evaluated at all levels, that is, formation of radicals (ESR), hydroperoxides (PV), and secondary volatile oxidation products. When iron was present, the pH was crucial for the formation of lipid oxidation products. At pH 3 some phenolic compounds, especially caffeic acid, reduced Fe(3+) to Fe(2+), and Fe(2+) increased lipid oxidation at this pH compared to pH 6. Among the evaluated phenols, caffeic acid had the most significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions and had no significant effect at pH 6 in Citrem- or Tween-stabilized emulsions on the basis of the formation of volatiles. The results indicated that phenol-iron complexes/nanoparticles were formed at pH 6.  相似文献   

19.
The impact of lipid oxidation on yellow pigment formation in squid lipids and proteins was studied. When the squid microsomes were oxidized with iron and ascorbate, thiobarbituric acid reactive substance were observed to increase simultaneously with b values (yellowness) and pyrrole compounds concomitantly with a decrease in free amines. Oxidized microsomes were not able to change the solubility, sulfhydryl content, or color of salt-soluble squid myofibrillar proteins. Aldehydic lipid oxidation products were able to decrease solubility and sulfhydryl content of salt-soluble squid myofibrillar proteins but had no impact on color. Aldehydic lipid oxidation products increased b values (yellowness) and pyrrole compounds and decreased free amines in both squid phospholipid and egg yolk lecithin liposomes. The ability of aldehydic lipid oxidation products to change the physical and chemical properties of egg yolk lecithin liposomes increased with increasing level of unsaturation and when the carbon number was increased from 6 to 7. These data suggest that off-color formation in squid muscle could be due to nonenzymatic browning reactions occurring between aldehydic lipid oxidation products and the amines on phospholipids headgroups.  相似文献   

20.
In meat, no detailed studies on the intracellular distribution of oxidized proteins during oxidative stress have been performed, to our knowledge. Therefore, we used fluorescence microscopy to detect and locate protein carbonyls, oxidation products of basic amino acids, generated in bovine M. Rectus abdominis during either exposition to a chemical free radical generating system, or refrigerated storage, or cooking. The technique consisted of an immunohistochemical detection of carbonyls by reaction with the specific probe DNPH (2,4-dinitrophenylhydrazine) followed by the sequential addition of a first antibody against DNPH-carbonylated proteins and a CY3-labeled secondary antibody. The fluorescence of the CY3 probe increased regularly with level of free radical generating system and storage time. Moreover, an important heterogeneity of carbonyl distribution was observed, with a higher oxidation level at the periphery than inside the muscle cells. Cooking induced fluorescence increase only at the periphery of cells. Specific coloration of collagen by Sirius red showed that collagen was not involved in fluorescence. We can deduce that accumulation of oxidized proteins observed in the cell periphery was linked to membrane protein oxidation and not to connective tissue oxidation. Biochemical assays were performed in parallel on membrane and myofibrillar proteins to provide complementary quantitative data on level of oxidized proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号