首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of supplemental Bermuda grass hay (BG) or ground corn on intake, digestion and performance of cattle consuming endophyte-infected fescue (I) were studied. In Exp. 1, a Latin square study, five growing Holstein steers (158.1 kg) consumed I ad libitum and were offered 0, .3, .6, .9 or 1.2% body weight (BW) of BG daily. Total dry matter (DM) intake rose linearly (P less than .05) with increasing BG, although intake was numerically similar with .6, .9 and 1.2% BW of BG. Digestibility was constant with diet (P greater than .10). Six growing Holstein steers used in Exp. 2, a Latin square with a 2 x 3 factorial arrangement of treatments, ingested I or noninfected (NI) fescue hay ad libitum with 0, .5 or 1.0% BW of ground corn. Total DM intake increased linearly as the level of corn rose (P less than .05). Total intake with I increased more with the first than with the second addition of corn, and the opposite occurred with NI (interaction between fescue infection and the quadratic effect of corn level, P less than .10). Organic matter digested (g/d) was greater for NI than for I and rose linearly with increasing corn ingestion (P less than .05). Ninety-six crossbred beef heifers and steers (184.2 kg avg initial live weight) were used in a 77-d fall grazing experiment (Exp. 3) with a 2 x 3 factorial treatment arrangement. Cattle grazed I or NI paddocks and were given no supplement or .34% BW of BG or .65% BW of ground corn on a daily basis (DM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Feed intake, digestion and digesta characteristics of cattle fed bermudagrass (BG) or orchardgrass (OG) alone or with supplemental ground corn or barley were determined in two 6 x 6 latin squares with 2 x 3 factorial treatment arrangements. In Exp. 1, beef cows (Hereford, Angus and Hereford-Angus; 452 kg) cannulated in the rumen and duodenum were fed BG (7.9% CP, 79% NDF and 8.7% ADL) or OG (9.8% CP, 79% NDF and 7.2% ADL) hays at 1.2% of BW per day either alone or with added ground barley (.64% BW) or ground corn (.60% BW daily). The increase in microbial OM flow with corn was greater for OG than for BG; corn elevated microbial OM flow more than did barley with OG but less than with BG (forage type x grain source interaction; P less than .10). The increase in total tract OM digestion with grain was greater for BG than for OG (supplementation effect and forage type x supplementation interaction; P less than 05). In Exp. 2, Holstein steers (228 kg) were fed BG and OG hays ad libitum either alone or with addition of either 1.07% of BW per day of barley or 1.00% BW of corn. Total DM intake was 2.19, 3.03 and 2.82% BW for BG and 2.14, 2.80 and 2.52% BW for OG alone or with barley or corn supplements, respectively, being affected by forage type, grain supplementation, grain type and a forage type x grain supplementation interaction (P less than .05). Organic matter digested daily (g/d) was higher for OG than for BG, higher with than without grain and higher for barley than for corn (P less than .05).  相似文献   

3.
Growing Holstein steers were used in two Latin-square experiments to determine the effects of supplementation of endophyte-infected fescue hay diets with other forages on intake, digestion, passage rate and serum prolactin concentration. In Exp. 1, five steers (average weight of 186 kg) were fed ad libitum amounts of endophyte-infected and noninfected fescue hays (I and NI, respectively) of similar quality in 0:1, 1:3, 1:1, 3:1 and 1:0 proportions. Total dry matter (DM) intake as a percentage of body weight (BW) linearly decreased .0055% for each 1% increase in dietary I (P less than .05). Dry matter intakes with 100% I and 100% NI diets were 2.13 and 2.72% of BW, respectively. Total tract digestion of neutral detergent fiber (NDF) increased linearly (P less than .05) with increasing I (66.0, 65.9, 66.3, 68.1 and 69.6%). Ruminal passage rate of particulates changed linearly (P less than .05) and quadratically (P less than .10) as I in the diet increased (3.5, 3.4, 2.6, 2.8 and 2.8%/h), while serum prolactin concentration and rectal temperature decreased linearly (P less than .05). In Exp. 2, four steers (average weight of 137 kg) were given ad libitum amounts of wheat straw (WS) or .73% of BW of clover hay (C) at 0800 and free access to either I or NI at 1600. Total intake as a percentage of BW was greatest for C with NI (3.04), intermediate for WS with NI (2.70) and lowest for C with I (2.30) and WS with I (2.23; P less than .05). Fescue intake (percentage of BW) was lowest (P less than .05) for C with I (1.56) and higher (P less than .05) for WS with NI (2.63) than WS with I (2.12); fescue intake for C with NI (2.33) was intermediate (P greater than .10) to WS with NI and WS with I. The results are interpreted to indicate that increasing the dietary level of I depressed intake linearly and markedly. Intake of diets high in I appears to be lower than can be explained only by ruminal-fill factors. When animals that are consuming basal I diets are provided access to nontoxic, high-quality forage, changes in intake may differ from those with basal diets of nontoxic forage.  相似文献   

4.
Two latin squares were conducted to determine the effects on feed intake and nutrient digestion of adding a ruminal buffer or DL-methionine to supplemental ground corn for Holstein steers (avg BW of 286 and 222 kg in Exp. 1 and 2, respectively) with ad libitum access to bermudagrass hay. In Exp. 1, steers were not supplemented (control) or were given .5 (LC) or 1.0% BW/d (HC) of ground corn without or with .021% BW of sodium bicarbonate (B). Total DMI was 2.39, 2.71, 2.79, 2.81 and 2.98% BW (effects of supplementation [P less than .05], level of corn [P less than .05] and buffer [P less than .06]), and OM digested was 3.56, 4.65, 4.65, 4.96 and 5.34 kg/d for control, LC, LCB, HC and HCB, respectively (effects of supplementation and corn level, P less than .05). In Exp. 2, corn levels were .24 and .74% BW/d and .0022% BW of DL-methionine (M) replaced B. Total DMI was 2.85, 3.00, 2.99, 3.22 and 3.34% BW (effects of supplementation and corn level, P less than .05), and digestible OM intake was 3.78, 4.24, 4.30, 4.84 and 5.12 kg/d for control, LC, LCM, HC and HCM, respectively (effects of supplementation and corn level, P less than .05). Overall, changes in feed intake and digestion with additions of a ruminal buffer and DL-methionine to corn supplements were not marked; however, buffer addition increased DMI intake to the greatest degree with 1.0% BW/d of corn.  相似文献   

5.
Three experiments were conducted with cattle consuming bermudagrass hay to determine whether low-level supplements of whey alone, corn alone, or whey plus corn affect feed intake, digestion, and(or) BW gain. Six ruminally and duodenally cannulated beef cows (574 kg), used in a Latin-square trial (Exp. 1), were fed bermudagrass hay without supplementation (control) or with 2.8% whey (low whey, LW), 5.6% whey (high whey, HW), 17.4% ground corn (C), 2.8% whey plus 14.9% corn (C-LW), or 5.6% whey plus 12.4% corn (C-HW). Supplementing with whey and(or) corn increased ruminal butyrate (8.8, 9.4, 10.0, 9.6, 10.5, and 11.0 mol/100 mol of total VFA for control, LW, HW, C, C-LW, and C-HW, respectively; SE = .20). Supplements did not affect microbial N flow at the duodenum. Six Holstein steer calves (158 kg) in a Latin square (Exp. 2) consumed bermudagrass hay ad libitum alone (control) or with .075 or .15% BW whey (LW and HW, respectively), .5% BW ground corn (C), or corn-whey mixes made by substituting whey for corn (C-LW and C-HW). Substituting .15% BW of whey for corn increased (P less than .05) total OM intake slightly (3.99, 3.84, 3.75, 4.11, 4.28, and 4.47 kg for control, LW, HW, C, C-LW, and C-HW, respectively; SE = .10). In an 84-d randomized block experiment (Exp. 3), 96 beef calves (194 kg) consumed (ad libitum) low-quality bermudagrass hay alone or with C, LW, HW, C-LW, or C-HW supplements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two experiments were conducted to determine the effects of frequency of offering and type of supplemental forage on intake and digestion in calves consuming endophyte-infected fescue hay (I). In Exp. 1, five Holstein steers, averaging 128 kg body weight (BW), were used in a 5 X 5 Latin square experiment. All steers were given free access to I in the afternoon. Morning meals consisted of 1) ad libitum access to I daily (control), 2) .5% BW of Bermuda-grass hay (BG) daily, 3) 1.0% BW of BG every 2nd d, 4) 1.5% BW of BG every 3rd d and 5) 2.0% BW of BG every 4th d. Steers receiving BG consumed less (P less than .01) I and more (P less than .01) total dry matter (DM) than did steers given I alone. Within treatment, I intake was similar (P greater than .10) among days of the feeding cycle without BG. Organic matter (OM) digestion was lower (P less than .05) with than without BG. In Exp. 2, 12 beef calves (Angus and Hereford X Angus; 6 mo of age, 155 kg initial BW) were used in a completely randomized-design experiment. Calves were given ad libitum access to I daily (control) or to BG or wheat hay (WH) on d 1 and I the following 3 d. Hay (I, BG or WH) intake d 1 of the feeding cycle was higher for BG and WH than for the control treatment (16 and 45%, respectively) and higher for WH than BG (25%; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Holstein steer calves (101 to 350 kg BW) consumed bermudagrass hay ad libitum without or with supplemental ground corn up to 1.0% of BW. As BW increased, total DMI increased quadratically (-2.459 + .05448 [BW]-.000073 [BW2] + .540 [corn DMI]; R2 = .83, sy.x = .655). Each kilogram of corn DM decreased bermudagrass DMI by .46 kg. Total digestible OM intake (kg) increased with BW and corn supplementation (.314 + .0127 [BW] + .441 [corn OM intake]; R2 = .79, sy.x = .444). Feed intake level accounted for approximately 2.5 times more variability in total digestible OM intake than digestion did. Corn supplementation decreased digestion of bermudagrass NDF (62.50 - 8.468 [corn DMI, % BW]; R2 = .13, sy.x = 8.121), with a similar decrease across BW. Increasing bermudagrass DMI (% of BW) decreased bermudagrass NDF digestion slightly, but variation accounted for was only 33% of that attributable to corn DMI (% of BW). Concentrations of common fiber fractions (NDF, ADF, cellulose, hemicellulose, and ADL) in bermudagrass explained very little variation in feed intake and digestion, indicating considerable influence of other factors. Bermudagrass intake and digestion were not related, and no substantial interactions were observed among steer BW, corn level, and bermudagrass composition.  相似文献   

8.
This experiment was conducted to determine the effects of tall fescue hay maturity on intake, digestion, and ruminal fermentation responses to different supplemental energy sources fed to beef steers. Twelve ruminally cannulated, crossbred steers (initial BW = 228 +/- 21 kg) were used in a split-plot experiment with a 3 x 4 factorial treatment arrangement. Steers were assigned randomly to three supplement treatments: 1) no supplement, 2) pelleted soybean hulls, or 3) coarse cracked corn. The second treatment factor was fescue hay maturity: 1) vegetative (VEG), 2) boot-stage (BOOT), 3) heading-stage (HEAD), and 4) mature (MAT). Supplements were fed once daily at 0.67% of BW (OM basis) and tall fescue hay was offered once daily at 150% of average intake. Supplement type x forage maturity interactions were not detected (P > or = 0.25) for forage, total, or digestible OM intake, which generally decreased (P < 0.01) with advancing forage maturity. Supplementation decreased (P < 0.01) forage and increased (P < 0.01) total OM intake. Supplement type had no effect (P = 0.56) on substitution ratio (unit change in forage intake per unit of supplement intake). Digestible OM intake was increased (P < 0.01) by supplementation and was greater (P = 0.05) with soybean hulls than with corn. Supplement type x forage maturity interactions (P < or = 0.10) were observed for OM and NDF digestibilities and N retention. Increases in digestibility with soybean hulls relative to corn were greater and supplementation elicited greater increases in N retention with more mature forages. Compared with soybean hulls, corn supplementation resulted in greater (P < 0.01) negative associative effects on OM digestibility. Supplementation did not affect (P > or = 0.10) ruminal pH, total VFA concentrations, or acetate:propionate ratio. Corn supplementation decreased (P < or = 0.07) ruminal NH3-N concentrations compared with control and soybean hulls; however, decreases in ruminal NH3-N concentrations were not consistent with the presence of negative associative effects. Thus, mechanisms not involving ruminal pH or NH3-N concentration seem responsible for negative associative effects observed with corn supplementation. Within the range of forage quality in this study, increases in digestible OM intake from starch- or fiber-based supplements were independent of forage maturity. When fed at similar levels of OM, soybean hull supplementation provided an average of 6% greater digestible OM intake than corn supplementation.  相似文献   

9.
Two experiments were conducted to determine the dietary value of pellets containing kenaf (Hibiscus cannabinus cv. 'Everglade 41') hay. Averaged across both experiments, kenaf pellets contained 82.6% kenaf hay, 16.6% liquid molasses, and 0.8% mineral oil. The chemical composition of the kenaf pellet was 12.6% crude protein (CP), 41.2% neutral detergent fiber (NDF), and 14.4% acid detergent fiber (ADF). In Exp. 1 (digestion and N balance trial), 18 lambs (body weight [BW] = 36.4 kg) were blocked by BW. Lambs were randomly assigned within a block to Diet 1 (59.5% corn and 40.5% alfalfa pellet), Diet 2 (59.7% corn, 28.4% alfalfa pellets, and 11.9% kenaf pellets), or Diet 3 (59.6% corn, 16.5% alfalfa pellets, and 23.9% kenaf pellets). Diets were formulated so that CP was the first-limiting nutrient. Each diet was limit-fed at 2.4% of BW. Replacing alfalfa pellets with kenaf pellets tended to decrease (P = 0.10) CP and ADF intakes, but increased (P = 0.01) DM digestibility. Diet had no effect (P = 0.33) on N balance. In Exp. 2 (dry matter [DM] intake trial), 32 lambs (BW = 30.4 kg) were blocked by gender and BW. Within a block, lambs were randomly assigned to one of four diets in a 2 x 2 factorial arrangement. Main effects were hay (bermudagrass or fescue) and supplemental protein source (kenaf or alfalfa pellets). Lambs were housed in individual pens with ad libitum access to the assigned hay. Supplemental protein was fed (185 g of DM) once daily. Hay intake was measured weekly for 8 wk. Lambs consumed more (P = 0.002) fescue than bermudagrass hay (743 vs 621 g/ d). Lambs fed fescue hay gained weight more rapidly (P = 0.001) than lambs fed bermudagrass hay (120 vs 72 g/d). Hay intake and ADG were similar (P = 0.90) for lambs fed alfalfa or kenaf pellets. Kenaf hay mixed with molasses and mineral oil can be formed into a pellet. In the diets used in this experiments, kenaf pellets can replace alfalfa pellets in diets fed to lambs without altering forage intake, gain, or N retention.  相似文献   

10.
Sixteen mature, lactating (453 kg) and 16 nonlactating (487 kg) Hereford and Angus x Hereford cows were used to determine effects of different dietary supplements and lactational status on forage intake, digestibility, and particulate passage rate. Supplement treatments and amounts fed (kg/d) were as follows: control, 0; and equal daily amounts of CP from soybean meal (SBM), 1.36; wheat middlings (WM), 3.41; or a blend of corn and soybean meal (corn-SBM; 22% corn and 76% SBM), 3.41. Cows were fed supplements at 0800 and had ad libitum access to prairie hay (4.9% CP) in stalls from 0800 to 1100 and from 1300 to 1600 for three 17-d periods. Lactational status and supplement type did not interact (P greater than .50) for hay DMI, DM digestibility, or particulate passage rate. Cows fed SBM ate more hay DM (P less than .01) and had greater hay DM digestibility (P less than .01) than did cows in other treatment groups. Average hay DMI (kg/100 kg of BW) was 1.95, 2.16, 1.94, and 1.89, and hay DM digestibility was 52, 61, 55, and 53% for control, SBM, WM, and corn-SBM supplements, respectively. Total diet DM digestibility was increased by supplementation (P less than .01), but no differences (P greater than .18) were observed among supplements. Lactating cows ate more (P = .13) hay DM (2.11 vs 1.87 kg/100 kg of BW) and had greater (P less than .05) fecal output (4.6 vs 4.3 kg/d) than did nonlactating cows. Dry matter digestibility and particulate passage rate were not affected (P greater than .35) by lactational status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Four ruminally cannulated Holstein steers (average BW 303 kg) were used in a 4 x 4 Latin square design digestion trial to study the influence of daily cottonseed meal (CSM; 1.6 g of CP/kg of BW) supplementation time on forage intake and ruminal fluid kinetics and fermentation. Steers were housed individually in tie stalls and were fed chopped fescue hay on an ad libitum basis at 0600 and 1400. Treatments were 1) control, grass hay only (CON) and grass hay and CSM fed once daily at 2) 0600 (EAM) 3) 1000 (MAM), or 4) 1400 (PM). Ruminal NH3 N concentrations reflected a time of supplementation x sampling time interaction (P less than .05); CON steers had the lowest (P less than .05) ruminal NH3 N concentrations at all times other than at 0600, 1000, 1200, and 2400, when they did not differ (P greater than .05) from at least one of the supplemented groups. Forage intake, ratio of bacterial purine:N, rate of DM and NDF disappearance, and ruminal fluid kinetics were not influenced (P greater than .05) by supplementation time. Total ruminal VFA differed (P less than .05) between CON and supplemented steers, as well as among supplemented steers (linear and quadratic effects P less than .05). Acetate, propionate, and valerate proportions were influenced (P less than .05) by a sampling time X supplementation time interaction. Under the conditions of this study, greater peak ammonia concentrations with morning supplementation than with afternoon supplementation did not stimulate ruminal fermentation or rate of NDF disappearance.  相似文献   

12.
Six ruminally fistulated steers (550 kg) and 24 heifers (315 kg) were used to determine the effect of source and amount of ruminal-escape lipid in a supplement on forage intake and digestion. Steers were used in a 6 x 6 Latin square digestion study to evaluate six supplementation treatments: 1) negative control (NC), no supplement; 2) positive control (PC), soybean meal:grain sorghum supplement; 3) low-Megalac (calcium salts of fatty acids; LM) supplement; 4) high-Megalac (HM) supplement; 5) low-Alifet (crystallized natural animal fat, LA) supplement; and 6) high-Alifet (HA) supplement. Supplements were fed at .30% of BW on a DM basis and were isoenergetic within fat levels (high vs low). Steers were fed mature brome hay (7.2% CP) at 1.5% of BW on a DM basis. In the forage intake trial, heifers were assigned randomly to the same supplement treatments. Prairie hay (4.4% CP) was offered at 130% of ad libitum intake. Dry matter and NDF digestibility, ruminal DM fill, indigestible ADF passage rate, and fluid dilution and flow rates were not different (P greater than .10) among treatments. Total VFA concentrations were greater (P less than .01) and acetate-to-propionate ratio (Ac:Pr) was less (P less than .01) in supplemented groups; however, neither source nor level of escape lipid influenced either total VFA or Ac:Pr. Forage intake was greater (P less than .01) for supplemented groups than for the NC. At the high level of fat inclusion, heifers supplemented with Alifet ate slightly more (P less than .05) forage than those supplemented with Megalac.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Ten ruminally cannulated heifers (BW = 416 kg; SD = 24) were used to test the effect of the form and frequency of supplemental energy on forage DMI and digestibility. Five treatments were arranged in a replicated, 5 x 4 Latin rectangle (n = 8), and included no supplement (control), dry-rolled corn (DRC) fed daily, DRC fed on alternate days (DRC-A), dried distillers grains plus solubles (DDGS) fed daily, and DDGS fed on alternate days (DDGS-A). Supplements fed daily were fed at 0.40% of BW, whereas alternate day-fed supplements were fed at 0.80% of BW every other day. Chopped grass hay (8.2% CP) was fed to allow ad libitum DMI, and the intake pattern was measured. Control heifers had greater (P < 0.01) hay DMI than supplemented heifers (1.88 vs. 1.66% of BW daily, respectively), although total DMI was lower (P < 0.01) for control. Hay DMI did not differ (P = 0.45) between DRC and DDGS, and tended to be lower (P = 0.08) by heifers on DDGS-A and DRC-A than by heifers supplemented daily. Hay intake was lower (P < 0.01) on supplementation days for DDGS-A and DRC-A than on nonsupplemented days. Heifers in alternate-day treatments had fewer (P < 0.01) and larger (P < 0.01) meals and spent less (P < 0.01) time eating than those supplemented daily. Average rumen pH was greater (P = 0.05) for control than supplemented heifers (6.30 vs. 6.19). Control heifers had greater (P = 0.04) rates and extents of NDF disappearance than supplemented heifers. Rate of hay NDF disappearance was lower (P = 0.02) for DRC than for DDGS. Supplementation decreased hay DMI and changed digestion kinetics. Supplementation frequency affected amount and pattern of DMI. Rate of hay NDF disappearance was greater for DDGS than DRC.  相似文献   

14.
Prairie hay supplemented with various amounts of corn and soybean meal was fed to steers in two experiments. Effects of supplementation on hay OM intake, digestion, and ruminal fermentation and kinetics were measured. A preliminary study was conducted to attain accurate values for OM intake and digestibility of prairie hay to be used in ration formulation using the NRC (1996) level 1 model. Ten steers (284 +/- 9 kg) given ad libitum access to chopped prairie hay (75% NDF, 6% CP) were supplemented with dry-rolled corn (0.75% of BW/d) plus soybean meal (0.25% of BW/d). Hay OM intake was 1.85% of BW and hay OM digestibility was 48%. Based on results from the preliminary study, eight ruminally cannulated beef steers (317 +/- 25 kg) received a sequence of eight different supplementation combinations (2 x 4 factorial arrangement of treatments). These supplements consisted of dry-rolled corn at either 0 or 0.75% of BW (DM basis) daily combined with one of four amounts of added soybean meal to provide between 0 and 1.3 g of degradable intake protein (DIP)/kg of BW. After supplements had been fed for 10 d, feces were collected for 4 d. Intake of hay and total OM increased quadratically (P < 0.01) in response to added DIP with or without supplemental corn. Hay OM digestibility increased quadratically (P = 0.03) as DIP was added when corn was fed in the supplement. Intake of digestible OM was greater (P < 0.01) with than without corn supplementation. Increasing DIP increased (P < 0.01) digestible OM intake regardless of whether corn was fed. Inadequate ruminally degraded protein in grain-based supplements decreased forage intake, digestibility, and energy intake of cattle fed low-quality prairie hay. Providing adequate supplemental DIP to meet total diet DIP needs seemed to overcome negative associative effects typically found from supplementing low-quality forages with large quantities of low-protein, high-starch feeds.  相似文献   

15.
A winter grazing experiment was conducted to evaluate the effects of stocking rate and corn gluten feed supplementation on forage mass and composition and the BW and BCS of bred 2-yr-old cows grazing stockpiled forage during winter. Two 12.2-ha blocks containing Fawn, endophyte-free, tall fescue and red clover were each divided into 4 pastures of 2.53 or 3.54 ha. Hay was harvested from the pastures in June and August of 2003 and 2004, and N was applied at 50.5 kg/ha at the initiation of stockpiling in August. On October 22, 2003, and October 20, 2004, twenty-four 30-mo-old Angus-Simmental and Angus cows were allotted by BW and BCS to strip-graze for 147 d at 0.84 or 1.19 cow/ha. Eight similar cows were allotted to 2 dry lots and fed tall fescue-red clover hay ad libitum. Corn gluten feed was fed to cows in 2 pastures to maintain a mean BCS of 5 (9-point scale) at each stocking rate and in the dry lots (high supplementation level) or when weather prevented grazing (low supplementation level) in the remaining 2 pastures at each stocking rate. Mean concentrations of CP in yr 1 and 2 and IVDMD in yr 2 were greater (P < 0.10) in hay than stockpiled forage over the winter. At the end of grazing, cows fed hay in dry lots had greater (P < 0.05) BCS in yr 1 and greater (P < 0.10) BW in yr 2 than grazing cows. Grazing cows in the high supplementation treatment had greater (P < 0.10) BW than cows grazing at the low supplementation level in yr 1. Cows in the dry lots were fed 2,565 and 2,158 kg of hay DM/cow. Amounts of corn gluten feed supplemented to cows in yr 1 and 2 were 46 and 60 kg/ cow and did not differ (P = 0.33, yr 1; P = 0.50, yr 2) between cows fed hay or grazing stockpiled forage in either year. Estimated production costs were greater for cows in the dry lots because of hay feeding.  相似文献   

16.
Matua bromegrass (Bromus willdenowii Kunth. cv. Grasslands Matua) was introduced in 1973, but little information exists concerning its potential as a hay for horses. Thus, voluntary intake and apparent digestibility of OM, CP, and fiber components of Matua by 18 Quarter Horse yearlings (mean initial BW 354 kg; SE 5.8) were compared with alfalfa (Medicago sativa L.) and coastal bermudagrass (Cynodon dactylon L.) as hays in a randomized block design. A 15-d adjustment period was followed by a 5-d collection period during which the hays were consumed ad libitum. Voluntary intake of DM was greater (P<.01) for alfalfa (10.9 kg/d) than for the mean of the grasses, and intake of Matua (10.0 kg/d) was greater (P<.001) than that of bermudagrass (7.4 kg/d). Apparent digestibility of OM was greater (P<.001) for alfalfa (74%) than for the mean of the grasses but did not differ between Matua (64%) and bermudagrass (60%). At the end of the digestion trial, each yearling was offered each of the three forage hays during an 11-d period to determine subsequent preference and effect of previous hay experience. Yearlings preferred alfalfa over the grass hays and generally selected more Matua than bermudagrass. All yearlings consumed less of the forage species to which they had been previously exposed compared with unadapted yearlings. The Matua hay fed in this trial was palatable and met most of the nutritional needs for yearling horses.  相似文献   

17.
Intake and digestion in cattle fed warm- or cool-season grass hay with or without low-level grain supplementation were studied with a 2 x 2 factorial arrangement of treatments in two 4 x 4 Latin square experiments. In Exp. 1, four cannulated beef cows (396 kg) were given Bermuda grass (B) or orchard grass (OG) hay at 1.5% body weight (BW) with 0 or .3% BW of ground corn (C; dry matter). Bermuda grass contained 12.1% crude protein, 79.3% neutral detergent fiber (NDF) and 5.5% acid detergent lignin (ADL); OG contained 10.6% crude protein, 82.4% NDF and 8.1% ADL. An interaction (P less than .07) between forage type and C supplementation was noted for microbial N entering the duodenum; C supplementation had a positive effect with B (30% increase) and little effect with OG. Corn supplementation did not affect ruminal NDF digestion with B, but it elicited an increase with OG (interaction, P less than .05; means were 60.7, 60.1, 61.5 and 66.3%). In the second experiment, growing dairy steers (196 kg) were given ad libitum access to similar B or OG hays and were fed 0 or .5% BW of C. Dry matter (DM) intake was lower for OG than for B (P less than .05) and was lower with than without C (P less than .06; means were 2.76, 2.56, 2.53 and 2.30% BW for B, BC, OG and OGC, respectively). Total tract organic matter digestion (%) was higher for OG than for B (P less than .10) and was higher with than without C (means were 54.7, 61.5, 60.4 and 65.3%). In conclusion, chemical constituents such as NDF may govern differences in intake between warm- and cool-season grasses, but physical attributes of the forages appear more important to digestion.  相似文献   

18.
The quality of different classes of forage hay (C3, C4 grasses and legumes) was determined in intake and digestibility trials with mature cattle, sheep and goats. For all nine hays, DM and NDF digestibility by cattle and goats was higher (P less than .05) than by sheep, with no differences due to forage class. Cattle had a higher (P less than .01) DM intake than sheep or goats averaged across forage (92.6 vs 65.8 and 68.6 g/kg BW.75); hay intake was highest on legume, with no difference between C3 and C4 grasses. Mean NDF intake by cattle was greater than by sheep or goats (58.7 vs 39.6 and 42.6 g/kg BW.75); NDF intake for all animal species decreased in the order C4 grass greater than C3 grass greater than legume. Particle passage rates did not differ (P greater than .05) with forage class but were higher (P less than .02) for sheep and goats than for cattle. Prefeeding ruminal DM fill values, determined by emptying, were 10.6, 15.0 and 19.9 g/kg BW1.0 for alfalfa, orchardgrass and switchgrass hays fed to cattle, and 11.2, 11.3 and 16.5 g/kg BW1.0 for the same hays fed to sheep. Estimated turnover times for DM and NDF were shorter (P less than .05) for sheep than for cattle; DM turnover was longer for switchgrass than for alfalfa and orchardgrass, with no forage differences in NDF turnover between these two animal species. Results show that goats were superior to sheep in NDF digestion.  相似文献   

19.
Two trials were conducted to evaluate the effects of whole shelled corn supplementation on intake and digestibility of low-quality meadow hay by cattle. In Trial 1, four ruminally cannulated steers (avg BW 418 kg) were used in a latin square design with four treatments (no corn or corn fed at .25%, .50% or .75% of BW). Hay DMI decreased (P = .002) linearly .43 g for each gram of increase in corn intake. In contrast, total diet DMI increased (P = .001) linearly as level of corn supplementation increased. Apparent DM digestibility of the diet increased (P = .026) linearly, whereas hay DM digestibility was not affected (P greater than .05) by supplemental corn, although the DM digestion coefficient for hay alone was 24% higher than for hay fed with corn at .75% of BW. Ruminal ammonia concentration and pH were not affected (P greater than .05) by treatments; however, ratio of acetate:propionate and acetate:butyrate responded (P less than or equal to .097) quadratically to increased corn supplementation. Corn supplementation resulted in a cubic (P less than or equal to .081) decrease in meadow hay NDF disappearance from nylon bags suspended in the rumen at all incubation intervals after 4 h. In Trial 2, 45 crossbred, nonlactating, pregnant cows (avg BW 474 kg) were used in a completely randomized design with three treatments (no corn, .91 and 1.81 kg corn.hd-1.d-1). Cow performance was not altered (P greater than .05) by treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An intake and digestibility study was conducted with three groups (six animals per group) of yearling wether dairy goats (four Toggenburg, two Alpine), wool sheep (Targhee X Dorset) and hair sheep (St. Croix). Body weight (BW) ranged from 42 to 52 kg, averaging 47 kg. All animals were penned individually and given ad libitum access to a mixture of alfalfa-smooth bromegrass hay in pelleted, chopped or long form. Each group contained three ruminally cannulated animals. There were no apparent differences in the composition of feed consumed among goats, wool sheep and hair sheep, and no significant animal type X forage form interactions for any of the variables evaluated. Significant differences were observed in dry matter intake (DMI) between wool sheep, hair sheep and goats: 3.17%, 2.66% and 2.23% of BW, respectively (P less than .05). Daily water intake (WI) was greatest for wool sheep (P less than .05), but not different between hair sheep and goats. Total digestibility of dry matter (DM) and all fiber fractions were similar among animal types. For the cannulated animals, ruminal content weight and total ruminal volume were greatest for wool sheep (P less than .05). Ruminal acid detergent lignin (ADL) turnover was greater in wool and hair sheep than goats (P less than .05), but no differences were apparent for dry matter or neutral detergent fiber (NDF) turnover. For all animals, DMI, DMI/BW, digestible DMI and WI were greater for pelleted than chopped and long hay (P less than .05). Total ruminal volume, contents weight (on an absolute or BW basis) and fluid volume were lower in the cannulated animals consuming pelleted hay (P less than .05). Ruminal DM turnover rate was faster on pelleted than long hay, while DM turnover rate on chopped hay was intermediate. Turnover of ADL was faster on pelleted than chopped or long hay (P less than .05), but there were no differences among forage forms in NDF turnover rate. Fluid turnover rate was faster on pelleted and chopped than on long hay (P less than .05). Under the conditions of this study, no apparent differences were observed among animal types in the nutrient composition of feed consumed, ruminal or total tract digestibilities or rate of passage for dry matter. However, feeding behavior or selectivity differences under natural grazing conditions may deviate from what has been observed in confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号