首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch was isolated from kernels of 27 rice samples consisting of nine U.S. long grain rice cultivars grown in three different locations (Missouri, Arkansas, Texas). Amylose (AM) content of the starches and the fine structure of the respective amylopectin (AP) were determined and used to explain differences observed in gelatinization properties. The AM content of rice cultivars grown at the lower temperature Missouri location increased 0.4–3% and 0.5–4% when compared with the same rices grown in Arkansas and Texas, respectively. AP values of the rice samples were isolated, debranched, and separated by low‐pressure size‐exclusion chromatography. The eluted AP linear chains were divided into three fractions to represent extra long (FrI), long (FrII), and short chains (FrIII). The corresponding average degree of polymerization (DPn) at the peaks of fractions FrI, FrII, and FrIII were 100, 39, and 16, respectively. Total carbohydrate analysis of the fractions indicated that cultivars grown in Missouri had a consistently higher proportion of FrIII and lower proportion of FrII as the same cultivars grown in Arkansas and Texas. Furthermore, the Missouri samples showed a shift toward shorter DPn in FrII and FrIII and had more of the shortest chain components (DPn < 6) of AP. The proportion of FrI did not follow a trend and varied depending on the cultivar and across location. Thermal analysis indicated that the higher temperature growth environments (Arkansas and Texas) resulted in higher onset, peak, and heat of gelatinization for the starches, suggesting longer cooking time and higher heat requirement. Overall, the data support the nonfield findings of other researchers that higher growing temperature results in AP with more DPn short chains that are within a range of DP >10 to form consistent crystallites, and thus results in higher gelatinization temperatures and enthalpies.  相似文献   

2.
The effect of three annually consecutive additions of pig slurry at two rates (90 and 150 m3 x ha(-1) x year(-1) on soils and soil humic acids (HAs) was investigated in a field experiment under semiarid conditions. Soils and pig slurries were analyzed by standard methods. The HAs were isolated from soils and pig slurry by a conventional procedure based on alkaline extraction, acidic precipitation to pH 1, purification by repeated alkaline dissolutions and acidic precipitations, water washing, dialysis, and final freeze-drying. The HAs obtained were analyzed for elemental (C, H, N, S, and O) and acidic functional group (carboxylic and phenolic) composition, and by UV-vis, FT-IR, fluorescence, and ESR spectroscopies. With respect to the control soil, the pig slurry amended soils had greater pH and electrical conductivity, slightly larger total N content, and smaller values of C/N ratio. A decrease of total organic C was observed only in soils amended for 2 and 3 years at the higher slurry rate. With respect to control soil HA, pig slurry HA was characterized by larger contents of S- and N-containing groups, smaller acidic functional group and organic free radical contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. Amendment with pig slurry HA determines a number of modifications in soil HAs, including increase of C, S, and COOH contents, C/N ratios, and aliphaticity and decrease of extraction yields and N, O, phenolic OH, and organic free radical contents. These effects are generally more evident after the first year of slurry application and tend to disappear with increasing number of treatments. Most probably, over the years the slightly humified slurry HA is mineralized through extended microbial oxidation, whereas only the most recalcitrant components, such as S-containing, phenolic, and aliphatic structures, are partially accumulated by incorporation into soil HA.  相似文献   

3.
Humic acids (HAs) from four soils were fractionated by size exclusion chromatography (SEC) on Sephadex G-75. Three fractions were obtained in all humic acids, collected and assayed by Polyacrylamide gel electrophoresis (PAGE). The unfractionated HA from each soil was used as reference. Each chromatographic fraction formed one electrophoretic zone corresponding closely to one band of the reference sample with some admixture of the fractions preceding or following. The results indicate that fractionation of HAs by tandem SEC-PAGE can be successfully used for obtaining fractions of reduced polydispersity and different electrophoretic mobilities. Pyrolysis/methylation-gas chromatography-mass spectrometry of the full size preparations of HA and fractions with exactly defined molecular size and electrophoretic mobility showed a different distribution in humic components, mainly lipids, lignin derivatives and N-containing compounds.  相似文献   

4.
The possibility to identify or develop new rice cultivars with low glycemic response was investigated. Twelve rice cultivars with a narrow range of amylose contents were selected based on their wide variation in rapid viscoanalyzer (RVA) pasting breakdown to study the relationship between starch digestibility and amylopectin fine structure and pasting properties. Rice flour samples were cooked for in vitro digestibility analysis using the standard Englyst assay. RVA was performed for pasting properties of starches. Results showed that rapidly digestible starch (RDS) was highly and negatively correlated (r = -0.86, p < 0.01; r = -0.81, p < 0.01) with FrI long and FrII intermediate/short debranched amylopectin linear chains, respectively, and positively correlated (r = 0.79; p < 0.01) with FrIII very short linear chains. Slowly digestible (SDS) starch was positively correlated (r = 0.80, p < 0.01; 0.76, p < 0.01) with FrI and FrII, respectively, and negatively correlated (r = -0.76, p < 0.01) with FrIII. RVA breakdown viscosity was positively correlated (r = 0.88, p < 0.01) with RDS and negatively correlated (r = -0.89, p < 0.01) with SDS. Thus, the RVA method potentially could be used as a screening tool for starch digestion properties. This study reveals a molecular basis in amylopectin fine structure variability for starch digestion properties in rice cultivars and could have value in identifying slowly digesting cultivars as well as developing a breeding strategy to produce low glycemic rice cultivars. Keywords: Rice; starch; RVA; amylopectin; digestibility.  相似文献   

5.
The residual effects of adding 40 t ha–1 sewage sludge (SL) to a degraded soil cropped with barley were investigated after 9 and 36 months in a field experiment under semiarid conditions. The principal soil properties were apparently still affected by SL amendment 9 months after application but the effects disappeared after 36 months. With respect to control soil humic acids (HAs), the SL-HA was characterized by higher contents of S- and N-containing groups, smaller contents of acidic groups, a prevalent aliphaticity, extended molecular heterogeneity, and smaller degrees of aromatic polycondensation and humification. Amendment with SL caused an increase in N, H, S and aliphaticity contents and a decrease in C/N ratios and O and acidic functional group contents in soil HAs isolated 9 months after SL application. These effects tended to decrease after 36 months, most probably because the slightly humified SL-HA was mineralised over time through extended microbial oxidation, while only the most recalcitrant components such as S-containing and aromatic structures were partially accumulated by incorporation into soil HA. Microbial biomass, basal respiration, metabolic quotient and enzymatic activities increased in soil 9 months after SL application, possibly because of increased soil microbial metabolism and enhanced mineralisation processes. After 36 months these properties returned to values similar to those of the unamended soil, presumably due to the loss of energy sources.  相似文献   

6.
Abstract

An investigation was conducted on physico‐chemical properties of humic acids (HAs) in Venezuelan soils. The HAs were extracted by the NaOH method from a Banco‐Bajio‐Estero soil toposequence (local names for soils located at high, intermediate and low topographic levels), in the Venezuelan plains (Mantecal, Apure State). The extracted HAs were analyzed for elemental composition and characterized by fluorescence, Fourier transform infrared (FT‐IR) and electron spin resonance (ESR) spectroscopies. The results showed that free radical concentration of HAs increased from soils at the highest to soils at the lowest topographic position. High carbon (C), nitrogen (N), and carboxyl group contents, E4/E6 ratio, aliphatic character and concentration of free radicals, and low oxygen (O) and phenolic hydroxyl group contents and total acidity were typical of HA from soils at the lower relief position. The FT‐IR spectra indicated that the HA from the soil at the lowest topographic position tended to have a slightly higher content of carboxyl groups than the HAs from soils at higher topographic levels. The observed fluorescence was attributed to the presence of condensed aromatic moieties and/or conjugated unsaturated systems of various complexity in the HA macromolecules.  相似文献   

7.
A humic acid (HA) isolated from a volcanic soil was separated in three fractions of decreasing molecular size (I, II and III) by preparative high performance size exclusion chromatography (HPSEC). The molecular content of the bulk soil HA and its size fractions was characterized by pyrolysis-GC-MS (thermochemolysis with tetramethylammonium hydroxide) and NMR spectroscopy. All soil humic materials were used to evaluate their effects on the enzymatic activities involved in glycolytic and respiratory processes of Zea mays (L.) seedlings. The elementary analyses and NMR spectra of the humic fractions indicated that the content of polar carbons (mainly carbohydrates) increased with decreasing molecular size of separated fractions. The products evolved by on-line thermochemolysis showed that the smallest size fraction (Fraction III) with the least rigid molecular conformation among the humic samples had the lowest content of lignin moieties and the largest amount of other non-lignin aromatic compounds. The bulk HA and the three humic fractions affected the enzyme activities related to glycolysis and tricarboxylic acid cycle (TCA) in different ways depending on molecular size, molecular characteristics and concentrations. The overall effectiveness of the four fractions in promoting the metabolic pathways was in the order: III>HA>II>I. The largest effect of Fraction III, either alone or incorporated into the bulk HA, was attributed to a flexible conformational structure that promoted a more efficient diffusion of bioactive humic components to maize cells. A better knowledge of the relationship between molecular structure of soil humic matter and plant activity may be of practical interest in increasing carbon fixation in plants and redirect atmospheric CO2 into bio-fuel resources.  相似文献   

8.
The main physical and chemical properties of a composted mixture of sewage sludge and wood chips, the nonamended soil, and soils amended with two rates of the compost, in the presence or absence of barley, were determined. Humic acids (HAs) isolated from these materials were characterized by various methods including elemental analysis and Fourier Transform infrared (FTIR), fluorescence, and electron spin resonance spectroscopies. With respect to the nonamended soil HA, the compost HA was characterized by a prevalent aliphatic character, low oxygenated functional group content, high contents of S, N-containing groups and polysaccharide components, low free radical concentration, high molecular heterogeneity, and low degrees of ring polycondensation, polymerization and humification. Compost application at the low rate appeared to induce only limited modifications in the structural and chemical properties of HAs from amended soils, whereas apparent modifications of HA properties occurred where a high amendment rate was used. The absence or presence of barley cultivation appeared not to exert any measurable effect on the composition and properties of compost-amended soil HAs.  相似文献   

9.
Purpose

Biochar is one of the most widely used ameliorants for soil amendment, which is known as factor which rises crop yields and levels of soil biological activity. Nowadays, it is under investigated how biochar application affects the dynamics of the humic components and whole soil organic matter (SOM) and the processes of its alteration. This investigation is aimed to evaluate the influence of biochar on the content, composition, and transformation of humic acids (HAs) as the main component of the SOM.

Materials and methods

The incubation experiment was carried out on three Podzol Antric soils, with varying amounts of initial total organic carbon. The incubation time was 90 days, using biochar gravimetric doses of 0.1 and 1.0%. The biochar was produced by fast pyrolysis of birch and aspen wood at 550 °С. Humus composition was analyzed for the organic matter fractions extracted with 0.1 M NaOH (containing HAs 1 + fulvic acids (FAs) 1) and 0.1 M Na4P2O7 (containing HAs 1 + FAs 1 + HAs 2 + FAs 2). Isolated HAs were characterized for their elemental composition (C, N, H, and S) and molecular composition with the use of solid-state 13C nuclear magnetic resonance (13C-NMR) techniques.

Results and discussion

We found that 0.1% of biochar amendment does not influence SOM mineralization, but 1.0% of biochar increases the mineralization by 15–18%. This process is accompanied by changes in the composition and properties of the HS. The increased proportion of HA aromatic fragments in biochar indicates an increasing of their stability. However, in soils with high humus content and a significant amount of insoluble matter, the processes of mineralization and the growth of HAs are taking place simultaneously. The replenishment of HAs could be the outcome of both the intensification of the transformation processes (mineralization and humification) of the more sustainable insoluble matter compounds and the humification of the biochar itself.

Conclusions

The influence of biochar on humification in Podzol Antric soils was revealed on the basis of incubation experiment. Both negative and positive changes under biochar in HS system were demonstrated. The active decrease of humus total contents and also the labile HS ought to qualify as negative changes. The increase of HA chemical maturity that leads to the stability of humus in whole as well as the intensive new HA formation thought to qualify as positive changes.

  相似文献   

10.
We used NMR spectroscopy to characterize humid acids extracted from soils that had received long-term application of 2 levels of biosolids to evaluate the soil organic matter (SOM) stability in biosolids-amended soils. The study also quantified fulvic acids (FAs), humic acids (HAs) and Fe/Al oxides. The soils were collected in 2004 from 7 fields, in Fulton County, southwestern Illinois, which received biosolids at a cumulative rate of 0 (control), 554 (low biosolids) and 1,066 (high biosolids) Mg ha−1. The application of biosolids increased both FA and HA contents, but biosolids-amended soil and control soil did not differ in FA/HA ratio. Biosolids application had no effect on water-soluble organic carbon content. Biosolids application increased the presence of Fe/Al in the SOM complex and lowered its C/Fe and C/Al ratios. 13C NMR spectra showed increased alkyl C and decreased aromatic C content in soil HAs with the application of biosolids, and the extent of such changes was higher with high than low biosolids treatment. Under biosolids application, the soil HAs’ C structure shifts from O-alkyl-dominant to alkyl-dominant. Biosolids application does not decrease SOM stability but rather increases the stability of soil humic substances.  相似文献   

11.
Humic acids (HAs), similar to other fractions of humic substances (HSs), have a large number of reactive functional groups enabling them to aggregate in solutions. Regardless of the origin of humic acid (aqueous or soil), this aggregation process is dependent on environmental conditions and strongly influences the mobility of soluble ionic and molecular pollutants. The aim of this work was to monitor the aggregation process of two humic acids isolated from different mineral soils (IHSS Elliot soil HA standard and Rendzic Leptosol HA) in the 2–11 pH range. Changes in aggregate size in HA sols were followed up using dynamic light scattering (DLS), while zeta potential (ZP) measurements in the same pH range were performed applying laser Doppler electrophoresis (LDE) technique. The effect of HA sol concentration and soil source on aggregation was examined as well. Besides, HA samples were characterized using Fourier transform infrared (FT‐IR) spectroscopy. By inspecting HA‐particle‐size dependence on pH, it can be concluded that both HAs in corresponding sols behave as molecular aggregates or supramolecular structures, formed from small individual moieties (sizes < 10 nm) at higher pH values. The ZP vs. pH curve for both HAs revealed the ZP minimum in the 5–7 pH range, caused most likely by dissociation of acidic functional groups prevailing at lower pH values and deaggregation predominating over dissociation at higher pH values.  相似文献   

12.
Humic acids (HA) and fulvic acids (FA) were extracted from tropical humid forest, tea garden, and field crop soils, and their chemical, potentiometric, and spectrophotometric properties were measured. There was less HA than FA in the cultivated soils. The HAs contained more carbon (C) and nitrogen (N) and had greater C/H ratios but lower O (oxygen)/H (hydrogen) ratios than FAs. Cultivated soils had greater total acidity than the forest soil generally because of both —COOH and phenolic-OH. Molecular weights of HA an FA, estimated from intrinsic viscosities, revealed that cultivation had reasonably reduced the molecular weights. The difference in pH (ΔpH) values, corresponding to three-fourths and one-fourth of the pH at final inflexion point showed that they were polyprotic. The longer time required for stability of greater pH of HAs was related to greater degree of stable coiling. The (E4/E6), in general, revealed a greater amount of aliphatic moiety rather than aromatic moiety.  相似文献   

13.
Tandem size-exclusion chromatography and polyacrylamide gel electrophoresis were used for obtaining stable fractions of different molecular sizes and electrophoretic mobilities from chernozem humic acids (HAs). The obtained fractions were analyzed using solid-phase 13C NMR. The tendencies of the changes in the aromatic and aliphatic components of the HA fractions with different molecular sizes and electrophoretic mobilities were experimentally revealed. The aromatic-to-aliphatic carbon ratio Carom (165–108 ppm)/Caliph (108-0 ppm) was used for comparing the degrees of aliphaticity and aromaticity of the HA macromolecules. This ratio increased by more than five times when going from the high-molecular-weight to the low-molecular-weight fractions and largely determined their hydrophilic properties. The obtained results can be useful for the interpretation of the structural organization and the ecological functions of soil HAs and their fractions.  相似文献   

14.
A humic acid (HA) fraction of the soil organic matter (SOM) was extracted with alkali from soil samples originated in non-fertilized and fertilized (NPK + organic manure) plots of long-term (45 years) field experiments. The HA preparations served as supplemental sources of nutrients or as sole source of either C or N for soil micro-organisms indigenous to the same soils. Under aerobic conditions (shake cultures) between 15% and 45% of HA were degraded in 21 days. The degradation was minimum if HAs were added supplementary, although the biomass formation was strongly enhanced. Preparations of HA from long-term fertilized soils appeared somewhat less susceptible to microbial degradation but they were capable of supporting microbial growth. Under copious nutritional conditions some novel HA-like substances were formed. The HA preparations re-isolated from individual cultures exhibited differences in elemental and structural characteristics. The FTIR spectra indicated an increasing proportion of aromatic structures that appeared as associated with mineral moieties. Conclusively, HAs from long-term fertilized and manured soils could be considered as more resistant to microbial activities than those from control soil, but under limited nutrient conditions their aliphatic constituents appear utilizable by micro-organisms.  相似文献   

15.
土壤腐殖酸对毒死蜱水解的影响   总被引:2,自引:0,他引:2  
土壤腐殖酸的VIS-UV光谱特征和E465/E665的测定结果表明,各种土壤腐殖酸的VIS-UV吸收曲线相似,但吸收峰强度和E465/E665差异较大,进而推得它们的腐殖化程度排序为:紫色潮土腐殖酸>中性紫色土腐殖酸>酸性紫色土腐殖酸>腐殖土腐殖酸,说明它们在组成上有共同的本性,但结构和性质差异较大。在此基础上,研究它们对毒死蜱水解的影响。结果表明,不同来源土壤腐殖酸均促进了毒死蜱的水解,但它们的影响程度有明显的差异。对于腐殖化程度最低的腐殖土腐殖酸,浓度为120mg L-1时,对毒死蜱水解的促进作用最大,而随着腐殖酸浓度的增大,促进作用却越来越弱;而对于其它三种样品,腐殖酸溶液对毒死蜱水解的促进作用随着腐殖酸浓度增大而加强,其中以腐殖化程度较低的酸性紫色土的促进作用较为明显。可见,毒死蜱的水解速率与土壤腐殖酸的浓度和腐殖化程度有关。其中,腐殖酸腐殖化程度的影响机理主要与腐殖酸的酸性和腐殖酸的吸附—催化作用有关,其具体作用机理有待于进一步从定性和定量方面去研究,以更好地指导毒死蜱农药的合理施用和污染土壤的修复。  相似文献   

16.
To investigate the chemical heterogeneity of humic acids (HAs), we applied two-dimensional (2-D) electrophoresis to HAs from a compost and two types of soils. In this method, HAs are first separated by isoelectric focusing (IEF) and then separated by polyacrylamide gel electrophoresis (PAGE). IEF and PAGE were carried out in the presence of 7?M urea. Upon 2-D electrophoresis of HAs, dark-colored substances were spread out across the gel mainly in the isoelectric point (pI) range of 3.0–4.5. Green fluorescence was observed in the smaller molecular size region of the gel, especially in the pI range of 3.0–4.5, and the most intense fluorescence was found at the moving front. The gels were divided into 36 sections, and then HA constituents were extracted from the individual sections and recovered by precipitation with acid. The distribution of organic carbon (C) among the gel sections coincided with that of the dark-colored substances on the gel. The total C recoveries were only 43–50%, suggesting that a considerable amount of HA constituents was lost during the extraction from the gels and purification. High-performance size-exclusion chromatography confirmed that the constituents of HAs were separated based on their molecular sizes by PAGE. The measurement of diffuse reflectance infrared Fourier transform (DRIFT) spectra indicated that the chemical properties of the HA constituents differed depending on the position on the gels and were affected by the molecular size rather than the pI. The fractions of the compost HA were characterized by higher proportions of aliphatic, proteinous and polysaccharide moieties and by the presence of lignin-derived structures. For the soil HAs, the fractions were characterized by a high proportion of the carboxyl group and a low proportion of aliphatic moieties. The proportion of proteinous and polysaccharide moieties in the fractions of soil HAs decreased with decreasing molecular size. The chemical properties of the green fluorescent substances remained unclear, since there was not enough of the substances to measure the DRIFT spectra. The present study showed that 2-D electrophoresis in the presence of concentrated urea offers an effective method for fractionating and isolating the constituents of HAs.  相似文献   

17.
中国黑土上腐殖酸和腐殖物质的提取及其描述   总被引:7,自引:0,他引:7  
Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC even after 23 successive HA extractions. In addition, the atomic C/H ratio decreased during the course of extraction while C/O increased; the E4/E6 ratio from the UV analysis decreased with further extraction while E~/E3 increased; the band assigned to aliphatic carbon (2 930 cm-1) in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra gradually increased with progressive extraction; the calculated ratio of the sum of aromatic carbon peak heights to that of aliphatic carbon peak heights from DRIFTS spectra declined with extractions; and nuclear magnetic resonance (NMR) data suggested that HA aliphatic carbons increased with extractions while aromatic carbons decreased. Thus, hydrophobicity and aliphaticity of HAs increased with extractions while polarity and aromaticity decreased. These data showed substantial chemical, structural, and molecular differences among the 23 HAs and two humin fractions. Therefore, these results may help explain why soil and sediment humin fractions have high sorption capacity for organic contaminants.  相似文献   

18.
The study of paramagnetic activity of humic substances in taiga and tundra soils of the Komi Republic and the assessment of the influence of soil hydromorphism on concentrations of free radicals in the structure of humic acids (HAs) and fulvic acids (FAs) have been performed. The concentration of free radicals in HA specimens was up to 11 times higher than that in FA specimens due to a higher content of aromatic and other condensed structures in HA molecules. This fact attests to the high capacity of HAs to polymerization and complexation reactions with participation of radicals. The average value of g-factor is higher for FA specimens than for HA specimens, which attests to a greater electron density shift of unpaired electron to oxygen atom in the structure of FAs because of its spin-orbital interaction with oxygen-containing functional groups, the concentrations of which are significantly higher in FAs than in HAs. An increase in the concentration of free radicals in the molecular structure of HAs is observed in taiga soils with an increase in the degree of their hydromorphism (from automorphic to semihydromorphic soils), which is related to the biohydrothermal conditions of humus formation in bog-podzolic soils with retarded biochemical processes and low degree of plant litter humification. As a result, HAs with the high content of free radicals in their structure are formed. An opposite situation is observed for HAs in tundra soils with a decrease in the content of unpaired electrons under conditions of the increased hydromorphism. The difference in the character of changes in the paramagnetic activity of HAs in taiga and tundra soils with different degrees of hydromorphism may be related to different natures of plant residues participating in humification processes. A tendency for a decrease in the paramagnetic activity in both HAs and FAs from the south to the north is observed, which may be related to a general decrease in the content of poly-conjugated systems in the structure of humic substances in tundra soils.  相似文献   

19.
The structure of humic acids (HAs) in zonal soil types—soddy-podzolic soils (two samples), gray forest soil (one sample), and chernozems (two samples)—was quantitatively studied by 13C NMR spectros-copy. In the series considered, the content of unsubstituted carbon in the aromatic fragments of HAs increased, and the fraction of unsubstituted aliphatic structures decreased. HAs of soddy-podzolic soils were found to be enriched with carbohydrate fragments compared to HAs of chernozems and gray forest soil. The carbon skeleton of HAs from typical rich chernozem contained significantly more aliphatic and carbohydrate fragments compared to typical chernozem, which probably reflected the lower degree of HA transformation in rich chernozem.  相似文献   

20.
Root exudation of organic acids could be an important strategy for plant acquisition of phosphorus (P) from P-deficient soils in tropical rain forests. However, the efficacy of organic acids on P mobilization in the rhizosphere could be reduced due to their rapid biodegradation by rhizosphere microorganisms. To assess the dynamics and function of organic acids in the rhizosphere soils in tropical rain forests, we examined the concentrations of oxalate, citrate, and malate in soil solution and the mineralization kinetics of 14C-radiolabelled oxalate and citrate in the rhizosphere and bulk soil fractions. We compared two tropical montane rain forests from Mt. Kinabalu, Borneo that share similar parent material (i.e., sedimentary rocks) and climate but differ in terms of soil age. The older soil (Tertiary age materials) was affected by podzolization and had less inorganic labile P compared to the younger soil (Quaternary colluvial deposits). In the P-deficient older soil, the rhizosphere soil solution contained markedly higher concentrations of oxalate, citrate, and malate than did the bulk soil, whereas in the P-rich younger soil, the levels of organic acids in the rhizosphere were lower. The higher levels of organic acids in the rhizosphere of P-deficient soils are caused by greater root exudation and the lower sorption capacity for organic acids. The results of mineralization kinetics showed that oxalate and citrate in soil solution were rapidly mineralized in both rhizosphere and bulk fractions of both P-rich and P-deficient soils, having short mean residence times (2.3–13.1 h for oxalate and 0.8–1.6 h for citrate). The mineralization rates of oxalate and citrate were highest in the rhizosphere fraction of the P-deficient soil, where the pool of organic acids was largest and rapidly replenished by root exudation. Our data indicate that consumption as well as production of organic acids in the rhizosphere could be enhanced in P-deficient soil. The efficacy of organic acids on P mobilization in the rhizosphere in tropical montane rain forests appears to vary depending on the level of soil P availability and the anion sorption capacity, attributable to soil aging with podzolization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号