首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Low root zone temperature (RZT) in early spring is a major constraint for maize production in Central and Northern Europe. Nutrient acquisition, nutrient uptake and particularly root growth are severely reduced at low RZT and the consequences of these growth depressions are frequently not completely compensated until final harvest. Perspectives to overcome these limitations by seed priming treatments with different micronutrients (Fe, Zn, Mn) were studied with maize seedlings exposed to low RZT (12 °C).Model experiments were performed in nutrient solution and soil culture using rhizo-boxes with root observation windows under green house conditions. To observe effects on final grain yield, additionally two field experiments were conducted in 2010 and 2011. Nutrient seed priming resulted in a significant increase in seed contents of the respective nutrients, i.e. Fe (25%), Zn (500%) and Mn (800%). At low RZT, biomass production and total root length of maize plants were significantly increased after Fe and Zn + Mn priming treatments, both in nutrient solution and in rhizo-box culture. There was no prominent difference in shoot Fe, Zn, Mn and P concentrations but total shoot contents per plant were significantly increased after nutrient seed priming. Plant growth promotion and improved micronutrient status was detectable also under field conditions at 5 weeks after sowing. This offers perspectives for using micronutrient seed priming for improving early seedling development and plant nutrient status of maize under low temperature climatic conditions.  相似文献   

2.
为探究土壤微量元素与烟叶常规化学成分的关联程度,及为提高烟叶质量提供理论依据,运用描述统计、简单相关和典型相关统计分析方法,研究了湖南省桃源县烟区植烟土壤微量元素与烟叶常规化学成分的关系。结果表明,桃源县烟区土壤中铁、锰、锌、铜、硼和钼含量平均值均在适宜范围及以上水平;土壤有效铜含量与烟叶中钾含量呈极显著负相关;土壤有效硼含量与烟叶中还原糖、总糖、氯含量和糖碱比呈极显著正相关,与总氮、蛋白质含量和钾氯比呈极显著负相关;土壤有效钼含量与还原糖含量、总糖含量和糖碱比呈极显著负相关,与总氮和蛋白质含量呈极显著正相关;土壤微量元素含量对烟叶常规化学成分的影响为有效硼>有效钼>有效锰>有效锌>有效铁>有效铜。通过典型相关分析表明,随着桃源县土壤有效锰和有效硼含量的减少或者有效钼含量的增加,能够引起烤后烟叶烟碱、总氮、蛋白质含量和钾氯比的增加以及还原糖、总糖、氯含量和糖碱比的降低。  相似文献   

3.
为正确评价喀斯特区土壤肥力状况,合理施用微量元素肥料及有效利用土壤资源,以FAST(大射电)核心区西番莲、猕猴桃、八月瓜、冷饭团4种果园为研究对象,采集0~20 cm、20~40 cm土层土壤,分析土壤有效态微量元素(Fe、Mn、Cu、Zn)含量,并根据土壤有效态微量元素含量及评价标准,评定土壤微量元素丰缺状况.结果表...  相似文献   

4.
[Objective] Maintaining intracellular ion homeostasis is one of the important salt-tolerant mechanisms of crops. This study aims to analyze differences in response characteristics of cotton ionome and salt-tolerant gene expression under different saline-alkali stresses, which provides a basis for understanding the mechanism of salt tolerance and improving salt tolerance of cotton. [Method] Using Lumianyan 24 as the experimental material, three kinds of salt and alkali stress types (salt stress, alkali stress, and mixed salt-alkali stress) and two concentration gradients (low and high concentrations) were set under pot cultivation conditions. Meanwhile, non-saline-alkali stress treatment was set as control. The dry matter weight of cotton plants and root morphological parameters including root length, root surface area, and root volume were measured in this study. The concentrations of 13 elements such as P, Na, K, Ca and Mg in different organs of cotton plants were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The relative expressions of salt tolerance related genes GhDFR1, GhSOS1, GhNHX1 and GhAKT1 were determined by the quantitative real-time polymerase chain reaction method. [Result] 1) Salt and alkali stresses significantly inhibited cotton growth. The growth inhibition rate of cotton under mixed salt-alkali stress treatments (48.7%–57.9%) was significantly higher than that under salt stress (27.6%–49.9%) and alkali stress (21.2%–35.5%) treatments. Under salt stress and mixed salt-alkali stress treatments, both shoot and root growth of cotton were significantly inhibited, dry matter weight, root length, root surface area and root volume were significantly reduced, while root growth was less inhibited under alkali stress treatments. 2) Under three types of saline-alkali stresses, Na content and Mo content in different organs of cotton plant increased significantly, but N content in leaves and roots decreased. 3) Under salt stress treatments, the uptake of Ca, Mg, Fe, Mn and Zn in cotton was inhibited, and the ion balance was maintained by promoting the transport of these ions and P, K. 4) In addition to Ca, Mg, Fe, Mn and Zn, P uptake was also inhibited under alkali stress treatments, but K uptake and P, K, Ca, Mg, Fe, Mn and Zn transport were promoted. 5) Under mixed salt-alkali stress treatments, especially under high salinity and pH conditions, most of nutrients uptake was inhibited, and the transport capacity of Ca, Mg, Zn, Mn and Fe was reduced. 6) The relative expression of GhSOS1 and GhAKT1 genes increased significantly under salt stress treatments, but increased first and then decreased under alkali stress and mixed salt-alkali stress treatments. The relative expression levels of GhSOS1 and GhAKT1 genes under three types of saline-alkali stresses were alkali>salt>mixed saline-alkali stress. With the increase of soil salinity and pH value, the relative expression of GhNHX1 gene increased first and then decreased. The expression levels of GhNHX1 gene were salt>alkali>mixed salt-alkali stress. [Conclusion] Due to high salinity and pH value, mixed salt-alkali stress significantly inhibits cotton growth and ions uptake, which restricts the transport of P, K, Ca, Mg, Zn, Mn and Fe. The decrease of K and Na regulation ability leads to ions imbalance.  相似文献   

5.
The study was designed to investigate the effect of cold irrigation water on rice growth and on uptake of N, P, K and Zn applied ca. 50, 20, 35 and 5 mg kg−1 soil, respectively. Cold temperature of irrigation water reduced rice shoot and root dry weight and plant height, significantly compared to hot temperature treatment. Under low temperature stress N was a major rice growth determinant. Increased shoot concentrations of both P and Zn allevated the low temperature stress. The uptake of N, P, K and Zn reduced significantly at low temperature (16.5–20 °C soil and 20–24 °C flood water) compared to high temperature (24.5–27 °C soil and 26.5–29.0 °C), with the strongest effect being noticed for N, followed by P, K and Zn. Application of N, P, K and Zn increased their uptake in rice shoots. Nitrogen and K had synergistic effect on their uptake. Responses to N and K application and their uptake behavior were well marked at higher than at low temperature whereas reverse was true for P and Zn.  相似文献   

6.
不同P-Zn配比对小麦幼苗微量元素营养的影响   总被引:2,自引:0,他引:2  
采用了螯合-缓冲营养液培养方法对小麦进行了苗期培养试验,在3个P水平(0,0.6,3.0 mmol/L)和3个Zn水平(0,3,30 μmol/L)的完全组合下对小麦苗期生长及Zn、Fe、Cu、Mn营养进行了研究,旨在为小麦微肥施用提供理论依据.结果表明,P、Zn的正常供应促进了小麦生长,二者的缺乏与过量均会抑制小麦发育,且这种影响在冠部表现得更为明显.在小麦苗期,Zn与Cu的吸收存在明显的拮抗作用,但供Zn则促进了Zn和Cu的转运,而Mn转运则受到了抑制;过量供Zn时,大量Zn被转运到冠部,同时明显抑制了(Fe+Cu+Mn)的吸收总量;P的供应显著地抑制了Fe的吸收,但P的供应提高了Zn、Cu、Mn的转运率;P、Zn在对Zn与Fe、Cu、Mn间吸收竞争的影响中,Zn本身的影响要比P的影响更为明显,供Zn明显促进了小麦幼苗对Zn的吸收;在小麦幼苗冠部,Zn与Fe的竞争中,供P利于Zn的吸收,缺P则利于Fe的吸收;而Zn与Cu以及Zn与Mn间的竞争中,缺磷时利于Zn的吸收,供磷后则利于Cu和Mn的吸收.总之,小麦幼苗Zn、Fe、Cu、Mn营养中,P、Zn的不同配比会不同程度地改变Zn与Fe、Cu、Mn的协同或拮抗效应.  相似文献   

7.
Biochar amendment to soil has the potential to improve soil quality and increase crop yield. Arbuscular mycorrhizal fungi (AMF ) provide beneficial plant services of stress alleviation with respect to phosphorus (P) deficiency and drought. The aim of this study was to explore interactive effects of biochar with AMF , P fertilization levels and irrigation strategies on growth of potato plants. Potato plants were amended with wood biochar of 0.74 % w/w (B+) or not (B?), fertilized with phosphorus of 0.11 mg P g?1 soil (P1) or not (P0), irrigated with full irrigation (FI ) or partial root‐zone drying irrigation (PRD ) and inoculated with AMF of Rhizophagus irregularis (M+) or not (M?) in split‐root pots in a sandy loam soil. Plants were analysed for growth performance, P and nitrogen (N) uptake and water use efficiency (WUE ). Biochar adsorption of mineral P and N in aqueous solution was tested in subexperiment. B+ significantly decreased plant biomass production except under P0 FI M?, where B+ increased plant biomass. This growth stimulation was counteracted by treatments of P1, PRD and M+. B+ significantly decreased plant leaf area, P and N uptake and WUE , but had no significant effect on root biomass and soil pH. The positive plant growth response to AMF was substantially reduced by biochar amendment. The wood biochar had no adsorption for mineral N, and it had 0.96 % adsorption for mineral P in aqueous solution. The results suggested that the negative effect of wood biochar application on plant growth may due to the reduced plant uptake of P and N and the possibility of phytotoxic effects of wood biochar on potato growth. It was concluded that the wood biochar used in current study had negative impact on plant growth and P/N uptake and it is not recommendable to apply this wood biochar to mycorrhizal agro‐system, to soil fertilized with high rate of P or to soil suffering water deficiency.  相似文献   

8.
Field experiments conducted on a calcareous soil have shown that application of elemental sulphur reduced the chlorosis of groundnut leaves and increased the dry matter, nodule biomass, pod, haulms, and oil yields, and concentration of nutrients in leaf tissue and their uptake by groundnut. The application of iron (Fe), zinc (Zn) and manganese (Mn) further helped in recovering the chlorosis of groundnut and increased the above parameters. On average, application of 20 kg S ha−1 as elemental sulphur (S) increased pod yield by 8.6–9.8% and oil yield by 8.8–15%. However, application of 10, 2, and 4 kg ha−1 of Fe, Zn and Mn, increased pods by 19.5, 13.6, and 11.7% and oil yield by 20.1, 13.9 and 12.2%, respectively.  相似文献   

9.
Abstract In the dry areas of the world there is an increasing pressure to apply low quality brackish waters for plant irrigation (agriculture, horticulture, landscape greening). Consequently there is a demand to improve salt tolerance of conventional crops and to develop adequate irrigation techniques too. The efforts in the past decades to approach the understanding of salt stress mechanism by focusing on biochemical and physiological research were disappointing with respect to progress for crop growth and yields under saline soil conditions. However, it is generally agreed by all disciplines involved in research for crop salt tolerance that under saline soils conditions the reduced water supply of crops is the most critical growth factor. The paper presents some model calculations and field investigations that demonstrate the effect of root water uptake on the salinity of the root surrounding soil fraction (rhizospheric soil). It is shown that root hair length and rhizospheric soil volumes are factors most relevant for understanding crop salt tolerance, when growing in soils. It is postulated that short root hairs contribute to a lower salt tolerance (onions), whereas long root hairs enhance water uptake from saline soils and crop salt tolerance (rape). As interactions between roots and soil contribute to the salt tolerance of crops under field conditions, it is doubtful that selection for salt tolerant varieties and breeding for salt tolerance under conditions of water and flow culture experiments is very efficient. Breeding for more salt-tolerant crops and brackish irrigation techniques should consider root morphology and soil/root contact zone.  相似文献   

10.
Coarse sandy soils have poor water retention capacity, which may constrain crop growth during drought. We investigated the effect of biochar amendment to subsoil on crop physiological processes and maize yield, comparing irrigated and drought conditions. A two‐year greenhouse experiment was conducted with one‐time application of straw biochar at concentrations of 0%, 1%, 2% and 3% (B0, B1, B2 and B3). Maize was planted twice in the same large pots one week and again 12 months after biochar application. Plants were fully irrigated until flowering; thereafter, half of them were subjected to drought. Our results indicate B2 and B3 increased soil water content at field capacity. Leaf water potential, stomatal conductance, photosynthesis and transpiration were maintained in B2 and B3 during the drying cycle in year one and in all biochar levels in year two. In the first year, B3 induced negative root geotropism and significantly reduced vegetative biomass under both irrigation schemes. Cob biomass was significantly reduced by B1 under full irrigation. In year two, B3 significantly increased cob biomass under drought. Nitrogen uptake was significantly reduced by B2 in year one, but increased significantly in B3 in year two. In both years, P uptake was significantly increased by B2 and B3. Furthermore, K uptake was significantly increased in B2 in year one and in all biochar treatments in year two. Overall, biochar improved water content of coarse sandy soil due to decreased bulk density and increased porosity after biochar amendment, consequently, improving crop physiological processes including transpiration and photosynthesis. Significant effects on yields tended to be more negative in the first year, and neutral to positive in the second year suggesting the enhancement of biochar effects with ageing. The positive effect in the second year shows biochar's potential for improving agriculture productivity in drought‐prone regions.  相似文献   

11.
Element concentration in wheat grains is an important objective of plant breeding programs. For this purpose, synthetic hexaploid lines (Triticum durum ×Aegilops tauschii) have been identified as potential sources of high element concentration in grains. However, it is not known if these lines reach higher element concentrations in grains as the consequence of a dilution effect due to lower grain yield. In addition, most of the studies carried out with these lines did not evaluate above-ground element uptake. The objective of this study was to improve understanding of grain element concentrations as a function of grain yield, element uptake and biomass and element partitioning to grains in synthetic and conventional cultivars of wheat. One experiment with two standard sowing dates was carried out under field conditions. Biomass, grain yield, and macronutrient(Ca, Mg, K, P and S) and micronutrient (Cu,Fe, Mn and Zn) concentrations in grains and vegetative tissues were measured in two cultivars and one synthetic (chosen from ten lines). The synthetic showed higher element concentration in grains, e.g. between 25 and 30% for Fe, Mn and Zn across sowing dates, than cultivars while grain yield was similar or lower, depending on the sowing date. On the contrary, the synthetic showed lower concentration of Cain grains. This line showed also higher uptake of Fe, Mn, K and P than cultivars. The superior grain element concentration of the synthetic line was not only due to a dilution effect but also to a higher uptake efficiency. Therefore, synthetics would bea valuable source of germplasm for increasing element grain concentration, at least in this case for Fe, Mn, K and P. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
[目的]探讨磁化水处理技术对长期保护地栽培土壤矿质养分、生物酶活性、物理结构等土壤理化性状及果实品质的影响,为减缓保护地栽培土壤次生盐渍化进程及土壤质量改善提供理论依据,为磁化水处理技术的应用提供理论基础。[方法]以山东省寿光市洛城镇长期保护地栽培土壤和尖椒为试材,采用田间小区试验设计,设置磁化水灌溉处理,以非磁化水灌溉处理为对照,测定0~15cm土层中土壤全量养分、有效性养分和交换性养分含量、土壤脲酶、磷酸酶、蔗糖酶和过氧化氢酶活性以及土壤容重、孔隙度、土壤颗粒以及pH等土壤理化性质和果实品质指标,分析其变化特征。[结果]结果表明:(1)磁化水灌溉提高了尖椒果实中维生素C、花青素、还原糖含量和可溶性糖含量,提高比例分别为1.76~46.85%;降低了果实中有机酸含量。(2)磁化水灌溉处理促进了Fe、Cu、N和P在叶片中的累积,其含量高于果实,而Mn和Zn含量则略低于果实中含量;Fe含量提高比例最高,在叶片和果实中平均值为57.20%,其次为全磷含量,平均值为53.49%;且磁化水灌溉处理尖椒果实和叶片矿质元素含量均高于非磁化水灌溉处理。(3)磁化水灌溉保护地栽培土壤中N、P、Mn和Zn等元素全量含量降低,为2.04%~20.61%;Fe和Cu等元素全量含量提高为4.64%-6.48%;土壤交换性K、Na和Ca等离子含量降低,为2.15%~4.95%,而交换性Mg离子含量则提高;铵态氮、硝态氮、速效磷和有机质等有效性养分含量提高。(4)磁化水灌溉保护地栽培土壤脲酶、蔗糖酶、磷酸酶和过氧化氢酶等生物酶活性均有不同幅度的提高,为0.27%~24.75%。(5)磁化水灌溉保护地栽培土壤容重降低、孔隙度增加,黏粒和粉粒等细小颗粒含量增加,而砂粒含量则有所下降。[结论]综上所述,磁化水处理技术有利于土壤物理结构的改善,对土壤有效性养分累积和供应强度以及土壤生物酶活性有明显的促进作用,从而提高尖椒果实的鲜食品质;并通过调整交换性离子含量和组成以及土壤pH的调节,减缓保护地土壤次生盐渍化的发生。  相似文献   

13.
剑河县土壤微量元素与有机质、pH值的关系研究   总被引:1,自引:0,他引:1  
对剑河县12乡镇72个土壤样本的有效态微量元素、有机质及pH值进行了测定,研究了土壤中有效锌、有效铜、有效锰、有效铁、有效硼元素与有机质、pH值的关系.研究结果表明:土壤有机质与有效铁、有效铜、有效锌、有效硼含量有正相关性,与有效锰含量呈负相关性;土壤pH值与有效锰、有效铁、有效锌、有效硼含量有负相关性,与有效铜含量呈正相关性的规律.在生产过程中,应针对不同乡镇的土壤微量元素状况,应在长期施用氮磷钾肥料的基础上,可采取调节有机质和pH值等提高微量元素有效性的方法来提高农作物对微量元素的吸收,从而提高农作物产量、质量.  相似文献   

14.
新疆阿图什市木纳格葡萄土壤养分现状分析   总被引:2,自引:0,他引:2  
为探明新疆阿图什市不同土壤质地、不同树龄木纳格葡萄园土壤养分及矿质元素的特性,笔者分别以壤土、粘土、沙土质地幼龄和盛果期果园为研究对象,分别测定0~20、20~60cm土样有机质、N、P、K、B、Fe、Zn、Mn、Cu等矿质元素含量,研究不同果园土壤养分和矿质元素的特性。结果表明:不同土壤质地大量元素有效磷、速效钾含量处于较高水平,速效氮含量处于偏低水平,粘土全氮含量处于较高水平,沙土、壤土全氮含量处于较低水平。微量元素有效硼、铜、铁含量处于较高水平,沙土锰含量、壤土锌含量处于低水平。阿图什市土壤有机质处于低水平,粘土中有机质、全氮、铜、铁、锰含量高于沙土和壤土,其中粘土中有机质、全氮、铁、锰与其他2种土壤质地含量差异极显著。从以上结果可以得出结论:新疆阿图什市葡萄园应增施有机肥,同时根据土壤质地、树龄等的不同,因地制宜,平衡施肥。  相似文献   

15.
Decreased micronutrient concentration in cereal grains caused by excessive application of phosphorus (P) fertilizer may contribute to reduce their nutritional quality. To help correct this problem in maize grain, a 3-year field experiment was conducted to determine how P application rate affects micronutrient partitioning in maize shoots and other plant organs and micronutrient bioavailability in grain. Phosphorus application significantly decreased shoot zinc (Zn) and copper (Cu) concentrations at all growth stages but had no effects on shoot iron (Fe) and manganese (Mn) concentrations. As the P application rate increased, shoot Zn and Cu contents decreased, and shoot Fe and Mn contents increased. The ratios of pre-anthesis to post-anthesis mineral contents were not affected by P application rate except Zn. P application increased the percentage of Zn that was allocated to grain and decreased the percentage that was allocated to other tissues, but had no effects on the allocation of other micronutrients among tissues. The bioavailability of Zn, Cu, Fe, and Mn in grain decreased as P application rate increased. Overall, taking account of grain yield and nutrients concentration, P fertilizer rates should range from 12.5 to 25.0 kg P ha−1 under the local condition. It can be concluded that not only grain yields, but also nutritional quality, should be considered in assessing optimal P rates in maize.  相似文献   

16.
尧都区耕层土壤微量元素有效态含量空间分布特征   总被引:2,自引:1,他引:1  
为了实现尧都区“精准农业”发展的新需求,为当地土壤耕作及作物栽培提供科学依据,基于GIS技术,采用地统计学分析方法对山西省尧都区耕层土壤中有效态Fe、Mn、Cu、Zn含量的空间变异特征和丰缺状况进行了研究。结果表明:(1)88.8%的土样缺乏有效Fe,有效Mn和有效Zn分别有19.2%和0.8%的样品处于临界值以下。描述性统计所得变异系数在41.5%(有效Zn)~55.5%(有效Mn)之间,均属于中等变异。(2)有效Fe含量的最适模型为球状模型,有效Mn、有效Zn和有效Cu的最适模型为指数模型。有效Zn含量块金值与基台值之比C0/C0+C为83.97%,空间相关性程度较弱;有效Fe、有效Mn和有效Cu具有中等的空间相关性。研究区4种微量元素具有各向异性,其中有效Mn在90°方向上变异程度较强。(3)Kriging插值结果显示,有效Fe和有效Cu在汾河流域都呈现出明显的带状沿河分布趋势,且由河流东岸向西岸呈递减趋势。研究区内有效Fe非常缺乏,有效Cu含量丰富,有效Mn在东南部和西北部富集,有效Zn整体由西南向东北递减。  相似文献   

17.
For soil water uptake studies under cropped conditions, root effectiveness for soil water absorption is of great significance. For development of root effectiveness function, information on the age of roots present at any soil depth at any time during the crop growth period is needed. For estimation of root age and root effectiveness function, a methodology has been developed. Wheat crop was used as a test crop. It has been observed that root effectiveness for water uptake remains constant during the early period of root growth and thereafter it decreases exponentially with root age. The application of the proposed root effectiveness function was tested successfully using macroscopic model of soil water dynamics which yielded 7 .83 per cent variation between observed and simulated soil water content on overall basis in the crop root zone for the entire crop growth season.  相似文献   

18.
《Soil Technology》1991,4(2):177-181
Two polymers, Acryhope and Aqua- store-B, were incorporated separately in sandy soil at rates of 0.5 and 1.0%. Each polymer was uniformly incorporated at three different treatments, either in the whole, top half, or bottom half of soil contained in plastic pots. Corn grains (Cairo variety) were grown for 35 days. Incorporation of the polymers in the soil increased both fresh and dry weight production of corn but only Acryhope increased water use efficiency over the polymer-free control. Acryhope polymer added at 0.5% in the top half of the pots was the most promissing treatment considering corn fresh weight, dry weight and water use efficiency. On the other hand Aquastore-B bottom treatment at both rates of application induced a higher response in corn with respect to total fresh weight, total dry weight and water use efficiency. Regardless of rate of application and placement, both polymers reduced irrigation frequency which would reduce the labor cost of irrigation in sandy soils  相似文献   

19.
采用防雨池栽方法研究了不同灌溉条件下两种栽培类型燕麦白燕7号皮燕麦(Avena sativa L.)和内农大莜一号裸燕麦(Avena nuda L.)籽粒植酸、总磷、蛋白质、钙、镁、钾、锌、铁、铜、锰含量变化特征。随灌水次数和灌水量的增加,内农大莜一号裸燕麦籽粒总磷和铜含量呈线性变化,籽粒产量、植酸、钙、镁、钾、锌、锰含量变化呈二次函数;白燕7号皮燕麦籽粒(去壳)锌和铁含量呈线性变化,植酸、总磷、粗蛋白、钙、镁含量呈二次函数变化。  相似文献   

20.
为了探明CaCO3对不同基因型小麦Zn吸收的影响,采用人工春化后的小麦幼苗在温室中进行了水培试验。结果表明:缺Zn和在营养液中添加100 mg/L CaCO3对小麦分蘖和生长发育未表现出明显的不良影响,而供试的3种基因型小麦(远丰998、中育6号及小偃22)的分蘖数及长势有明显的差异。与缺Zn相比,供Zn使小麦根部P吸收量增加25.6%,但对N,K吸收无明显影响。供Zn显著提高了小麦植株各部分尤其是根中的Zn含量和吸收量,而不同基因型间无显著差异,添加CaCO3未降低对Zn的吸收。添加CaCO3后,小麦叶片叶绿素SPAD值降低21.4%,但对小麦植株的Fe吸收无明显影响。据此推测叶绿素SPAD值的降低并非由于CaCO3降低小麦对Fe的吸收而引起的,其原因有待进一步研究。而供Zn仅能增加小麦根部Fe吸收量,对地上部无明显影响。无论是否供Zn,Fe主要累积在小麦的根部,而供Zn加剧了这种累积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号