首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
大豆种子特异性启动子的克隆及功能分析   总被引:4,自引:0,他引:4  
【目的】从大豆中克隆得到β-伴球蛋白α亚基基因的启动子序列7αP,并对其进行功能分析。【方法】利用PCR技术从大豆基因组DNA中分离β-伴球蛋白α亚基基因启动子序列7αP,将其与GUS基因融合,构建种子特异性表达载体p7αP-GUS,通过根癌农杆菌介导法转化烟草(Nicotiana tabacum)NC89,对再生植株进行PCR、Southern blot检测和GUS组织化学分析。【结果】序列分析表明,7αP长度为1 382 bp,其中含有多种种子特异性启动子的序列元件,如RY重复序列元件、E-box、SEF1-motif、SEF4-motif(、CA)n、Dc3启动子结合因子和ACGT序列元件及一些诱导物应答元件。转基因植株的PCR和Southern blot结果显示,成功地获得了转基因阳性植株;GUS活性检测表明,仅能在种子中检测到GUS活性,而在根、茎和叶等其他组织中均未检测到GUS活性。【结论】大豆β-伴球蛋白α亚基基因上游1 382 bp片段具有种子特异性启动子功能,7αP为种子特异性启动子。  相似文献   

2.
【目的】构建β-伴大豆球蛋白α′-亚基基因具有功能性间隔序列的发夹结构(Intron-hairpin RNAi,ihp-RNA)的RNA干扰(ihp-RNAi)表达载体并转化大豆,为通过RNA干扰技术改良大豆的营养品质奠定基础。【方法】以大豆总RNA反转录获得的cDNA为模板,通过PCR扩增克隆了β-伴大豆球蛋白α′-亚基基因的核心保守序列(400 bp),并将该片段的反义和正义片段插入到重组植物表达载体p3301P的种子特异性启动子7αp下游,将功能性间隔序列intron-SSR插入反义片段与正义片段之间,构建α′-亚基基因ihp-RNAi安全型表达载体p3301-PFNZ-α′-BADH,并进行PCR及双酶切鉴定。利用农杆菌介导法将带有p3301-PFNZ-α′-BADH 的菌株转化“吉农27”大豆植株,对转基因植株进行PCR、Southern杂交检测,并对转基因植株α′-亚基基因的表达量进行RT-PCR。【结果】成功构建了β-伴大豆球蛋白α′-亚基基因ihp-RNAi表达载体p3301-PFNZ-α′-BADH,利用农杆菌介导法转化大豆得到7株阳性转化植株;Southern杂交结果显示,外源基因以1~2个拷贝整合于大豆基因组中;RT-PCR检测表明,β-伴大豆球蛋白α′-亚基基因的表达被明显抑制。【结论】成功构建了β-伴大豆球蛋白α′-亚基基因ihp-RNAi表达载体,获得了α′-亚基基因被明显抑制的转基因大豆植株,为应用基因工程技术进行大豆品质改良奠定了基础。  相似文献   

3.
以napA基因序列设计引物,以甘蓝型油菜中油821基因组总DNA为模板,通过PCR扩增,克隆了种子特异表达napin启动子。序列分析表明,试验得到扩增片段长1148bp,含有其它napin启动子序列共有的高度保守序列。将扩增序列与真菌匍枝根霉Δ6-脂肪酸脱氢酶基因RnD6D连接,构建了RnD6D的种子特异表达载体pCNR,为获得高产γ-亚麻酸的转基因油菜奠定了基础。  相似文献   

4.
《山西农业科学》2016,(4):452-455
山西省原平市境内滹沱河沿岸分布有大量野生大豆。野生大豆种子蛋白质类型丰富,是重要的蛋白质资源。大豆种子蛋白质主要包括β-伴大豆球蛋白(7S球蛋白)和11S球蛋白,其中,β-伴大豆球蛋白主要由76 k D的α′,72 k D的α和52~54 k D的β亚基组成。采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)技术,筛选400份滹沱河沿岸野生大豆种质,发掘出5种关于β-伴大豆球蛋白的系列表型:对照型、α′亚基分子量偏高型、α′亚基分子量偏低型、β亚基上位缺失型、β亚基缺失型。结果表明,滹沱河沿岸野生大豆种子β-伴大豆球蛋白性状的多样性,揭示出野生大豆种子β-伴大豆球蛋白具有复杂的分子构成和遗传机制。  相似文献   

5.
 【目的】明确大豆7S球蛋白(α+β)-亚基双缺失特性是否是由于α-与β-亚基基因的缺失或变异引起的。【方法】聚丙烯酰胺凝胶电泳(SDS-PAGE)分析和α-与β-亚基基因的PCR扩增、克隆、测序和序列比较。【结果】该种质α-亚基基因特异性引物的PCR扩增结果与对照基本一致,β-亚基基因的则与对照不同。α-亚基基因扩增片段与对照的同源性较高,为90.9%, 二者的区别主要存在于扩增片段的5′-端;β-亚基基因间的同源性较低,仅为53.1%。另外,在该材料β-亚基基因扩增片段的两端,检测到一对短的反向重复序列。【结论】该种质α-与β-亚基同时缺失的特性不是由α-与β-亚基基因的缺失引起的;α-与β-亚基基因的扩增序列与对照存在一定的差异,基因序列间的差异是否为导致α-与β-亚基缺失的直接原因,尚需进一步研究确认。  相似文献   

6.
细胞分裂素是重要的植物激素,它对植物的生长发育具有重要的调控作用。通过基因工程技术提高内源细胞分裂素在大豆种子中的含量,诱导营养物质向种子定向运输,可提高大豆的灌浆效率,为增加作物产量提供了新的研究方向。ipt基因编码的异戊烯转移酶是催化AMP转化为细胞分裂素的关键酶,将ipt基因与大豆种子发育中后期特异性表达的β-伴球蛋白α-亚基专一启动子(7ap)融合,构建了植物表达载体pCAMBIA33017αp-ipt-CaMV35 3'ULR,并通过农杆菌介导转化大豆。经草铵膦抗性筛选、PCR、GUS组织化学染色及Southern Blot检测,证实外源基因以单拷贝的形式整合进大豆基因组,共获得8株转基因大豆。  相似文献   

7.
Δ8去饱和酶和Δ9链延长酶是二高-γ-亚麻酸(DGLA)和二十碳四烯酸(ETA)合成的关键酶。本研究利用大豆种子特异性启动子替换35S启动子构建了新的多基因辅助载体PAUX-2,并在此基础上构建了包含来自小眼虫藻的Δ8去饱和酶基因和来自球等鞭金藻的Δ9链延长酶基因的植物表达载体pCambia2300-Δ8Δ9。为进一步利用转基因技术研究这些基因在植物中的表达提供了条件。  相似文献   

8.
 【目的】验证少根根霉△6-脂肪酸脱氢酶基因在转基因油菜中的表达情况,为进一步基因工程化生产γ-亚麻酸打下基础。【方法】将少根根霉△6-脂肪酸脱氢酶基因和植物表达载体pCPN2301连接,构建重组表达质粒pCPNRAD6,采用农杆菌介导的油菜子叶节转化法,将该基因导入甘蓝型油菜H165,获得转基因植株,最后通过气相色谱检测基因的表达情况。【结果】PCR、GUS组织化学染色和Southern杂交分析结果表明,目的基因已经整合到油菜基因组中,Northern杂交分析进一步表明目的基因在RNA水平获得表达,气相色谱分析检测到转基因油菜叶片中γ-亚麻酸和十八碳四烯酸生成,证明目的基因获得功能表达。同样,用改变少根根霉Δ6-脂肪酸脱氢酶基因的转译起始密码子周边序列的基因RAD6-1所构建的转基因酵母中,也得到类似的结果,而且各种目的脂肪酸的含量均有提高。【结论】初步建立了少根根霉△6-脂肪酸脱氢酶基因在转基因油菜中的表达体系。  相似文献   

9.
种子特异启动子的克隆及植物表达载体构建   总被引:1,自引:1,他引:0  
[目的]启动子是植物基因工程中一个重要工具,对构建植物生物反应器有着重要意义。8S球蛋白是绿豆中含量最丰富的种子贮藏蛋白,因此,其调控序列可能提供了一个很好来源的种子特异性启动子。[方法]通过基因组步移技术克隆了绿豆8s球蛋白a亚基基因8SGα的启动子区域,基因组步移使用的引物根据绿豆8SGα的cDNA序列设计。[结果]通过3轮PCR的扩增,得到了472bp的上游序列片段,构建了植物双元表达载体pBI-8SGα-GUS。[结论]研究结果可用于转化植物,并于转基因植物中分析启动表达的时空特异性及表达强度,并为植物种子生物反应器提供重要元件。  相似文献   

10.
△^6-脂肪酸脱氢酶基因可将亚油酸转化为γ-亚麻酸。我们将克隆的深黄被孢霉△^6-脂肪酸脱氢酶基因(D6D)插入植物表达载体pBI121。构建了重组质粒pBI121-D6DMI。通过农杆菌(Agrobacteritom tumefaciens)介导途径,将深黄被孢霉△^6-脂肪酸脱氢酶基因导入了甘蓝型油菜恢复系,经过诱导分化获得抗卡那霉素的再生植株。PCR检测及Souther杂交结果表明,外源基因△^6-脂肪酸脱氢酶基因已整合到油菜再生植株的基因组中。  相似文献   

11.
The promoter region (BCSP666) of β-conglycinin α-subunit gene from the genomic DNA of soybean Jilin 43 was isolated by PCR method. Sequencing analysis showed that the cloned fragment BCSP666 had the similar structure to the soybean seed-specific promoter β-conglycinin α'-subunit gene promoter and β-conglycinin β-subunit gene promoter, and it also contains many motifs that contribute to the seed-specific promoter activity. Based on this sequencing analysis, we deduced that promoter fragment BCSP666 had the seed-sepecific promoter activity. And then we constructed the seedspecific expression vector pBMI666 with the promoter fragment BCSP666 and △6-fatty acid desaturase gene from Mortierella isabellina. The △6-fatty acid desaturase is the rate-limiting enzyme of the desaturation of linoleic acid in the production of a human essential fatty acid, γ-linolenic acid(GLA). The production of γ-linolenic acid(GLA) was observed in soybean callus cells, which were transformed with this vector. This confirmed the activity of the activity fragment BCSP666.  相似文献   

12.
13.
γ-亚麻酸在人类的健康与营养中具有重要的功能,利用基因工程手段提高其产量是满足其需求日益增大的途径之一。Δ6脂肪酸脱饱和酶是γ-亚麻酸合成途径中的关键酶,催化亚油酸(C18∶2 Δ9,12)到γ-亚麻酸(C18∶2 Δ6,9,12)的反应。通过克隆三角褐指藻的Δ6脂肪酸脱饱和酶基因,并连入酵母表达载体pPIC3.5K中,在毕赤酵母中进行了表达,结果表明:重组酵母经甲醇诱导后表达转入的外源基因,气-质联用分析显示重组毕赤酵母中含有γ-亚麻酸和SDA(18∶4 Δ6,9,12,15),其含量分别为2.5%和0.8%。  相似文献   

14.
通过基因工程手段抑制甘蓝型油菜Δ12-油酸去饱和酶(delta-12 oleate desaturase FAD2)基因的表达,从而使油酸脱饱和产生亚油酸的步骤受阻,达到富集油酸,减少多不饱和脂肪酸含量的最终目的。依据植物RNA干扰的原理和研究中用于构建RNAi载体的基本经验,选择油菜fad2基因片段(510bp)分别以反向和正向的形式插入到油菜napin启动子下游,并在反向和正向插入的基因片段之间即间隔区导入1个来源于豌豆的rbcS-3C基因内含子(83bp)及其剪切位点之前5bp、之后4bp片段。组装完成的fad2RNAi载体转入到植物双元表达载体pCAMBIA3301,植物筛选标记基因采用抗灭生性除草剂PPT的选择基因bar及报告基因gus,从而构建成以甘蓝型油菜fad2基因为靶标的RNAi植物表达载体pCAMBIA3301-fad2i。  相似文献   

15.
植物基因工程载体构建时,一般采用组成型启动子,因涉及转基因食品安全性问题,在社会上引起争议。采用组织特异性启动子代替组成型启动子,既可调控下游基因的表达又能解决转基因食品安全性问题。采用同源克隆方法从栽培大豆绥农14中克隆了2 278 bp的豆荚特异性启动子Pmsg,与GenBank上的大豆msg基因启动子序列相似性为99%。构建了由启动子Pmsg调控经人工改造、具有抗大豆食心虫功能的基因(Cry1Iem)的表达载体pBMBt,以及由种子特异性启动子PGy2调控Cry1Iem基因的表达载体pBGBt,为抗大豆食心虫基因工程研究奠定了重要基础。  相似文献   

16.
以种子特异性表达的大豆凝集素基因启动子、终止子以及棉花△ 12脱饱和酶基因ghFAD2 - 1进行倒位重复基因构建 ,以农杆菌介导法转化陆地棉品种Coker315。经PCR及Southern杂交证实倒位重复基因已转入棉花中。种子内脂肪酸含量分析结果表明 ,该倒位重复基因构建的表达及沉默效应在不同的转基因品系间存在差异 ,油酸由对照的 19 6 %提高到 2 6 0 %~ 77 8% ,其余组份含量则明显下降  相似文献   

17.
Studies have shown that the three subunits of β-conglycinin are the main potential allergens of soybean sensitive patients.And β-conglycinin has adverse effects on nutrition and food processing.So solation and production of lines with lower β-conglycinin content has been the focus of recent soybean breeding projects.Soybean lines with deficiency in one or all subunits of β-conglycinin have been obtained.An effective and rapid system to identify such mutations will facilitate genetic manipulation of the β-conglycinin subunit composition.Here,two segregating F_2 populations were developed from crosses between Cgy-1/cgy-1 (CC),an α′-lacking line (Δα′),and DongNong 47 (DN47),a wild-type (Wt) Chinese soybean cultivar with normal globulin components,and Cgy-2/cgy-2 (CB),an α-lacking line (Δα),and DN47.These populations were used to estimate linkage among the cgy-1 (conferring α′-null) and cgy-2 (α-null) loci and simple sequence repeat (SSR) markers.Seven SSR markers (Sat_038,Satt243,Sat_307,Sat_109,Sat_231,Sat_108 and Sat_190) were determined to co-segregate with cgy-1,and six SSR markers (Satt650,Satt671,Sat_418,Sat_170,Satt292 and Sat_324) co-segregated with cgy-2.Linkage maps being composed of seven SSR markers and cgy-1 locus,and six SSR markers and the cgy-2 locus were then constructed.It assigned that the cgy-1 gene to chromosome 10 at a position between Sat_307 and Sat_231,and the cgy-2 gene to chromosome 20 at a position between Satt650 and Satt671.These markers should enable map-based cloning of the cgy-1 and cgy-2 genes.For different subunit-deficiency types[α′-null,α-null and (α′+α)-null types],the two sets of SSR markers could also detect of polymorphism between three normal cultivars and seven related mutant lines.The identification of these markers is great significance to the molecular marker-assisted breeding of soybean β-conglycinin subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号