首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
OBJECTIVE: To determine the pharmacokinetics and pharmacodynamics of epsilon-aminocaproic acid (EACA), including the effects of EACA on coagulation and fibrinolysis in healthy horses. ANIMALS: 6 adult horses. PROCEDURES: Each horse received 3.5 mg of EACA/kg/min for 20 minutes, i.v. Plasma EACA concentration was measured before (time 0), during, and after infusion. Coagulation variables and plasma alpha(2)-antiplasmin activity were evaluated at time 0 and 4 hours after infusion; viscoelastic properties of clot formation were assessed at time 0 and 0.5, 1, and 4 hours after infusion. Plasma concentration versus time data were evaluated by use of a pharmacokinetic analysis computer program. RESULTS: Drug disposition was best described by a 2-compartment model with a rapid distribution phase, an elimination half-life of 2.3 hours, and mean residence time of 2.5 +/- 0.5 hours. Peak plasma EACA concentration was 462.9 +/- 70.1 microg/mL; after the end of the infusion, EACA concentration remained greater than the proposed therapeutic concentration (130 microg/mL) for 1 hour. Compared with findings at 0 minutes, EACA administration resulted in no significant change in plasma alpha(2)-antiplasmin activity at 1 or 4 hours after infusion. Thirty minutes after infusion, platelet function was significantly different from that at time 0 and 1 and 4 hours after infusion. The continuous rate infusion that would maintain proposed therapeutic plasma concentrations of EACA was predicted (ie, 3.5 mg/kg/min for 15 minutes, then 0.25 mg/kg/min). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that EACA has potential clinical use in horses for which improved clot maintenance is desired.  相似文献   

2.
OBJECTIVE: To determine the effects of enteral administration of doxycycline, amoxicillin, cephalexin, and enrofloxacin at therapeutic dosages for a typical duration on hemostatic variables in healthy dogs. ANIMALS: 14 Beagles. PROCEDURE: Doxycycline (10 mg/kg, PO, q 12 h), amoxicillin (30 mg/kg, PO, q 12 h), cephalexin (30 mg/kg, PO, q 12 h), and enrofloxacin (20 mg/kg, PO, q 24 h) were administered in random order to 10 healthy dogs at standard therapeutic dosages for 7 days, with a 7-day washout period between subsequent antimicrobials. In addition, 4 Beagles served as control dogs. Variables were evaluated before and after antimicrobial administration; they included platelet count, Hct, 1-stage prothrombin time (PT), activated partial thromboplastin time (PTT), fibrinogen concentration, and platelet function. Platelet function was assessed via buccal mucosal bleeding time, aggregation, and a platelet-function analyzer. RESULTS: Administration of all antimicrobials caused a slight prolongation of 1-stage PT and activated PTT and slight decrease in fibrinogen concentration. Cephalexin caused a significant increase in 1-stage PT and activated PTT, amoxicillin caused a significant increase in activated PTT, and enrofloxacin caused a significant decrease in fibrinogen concentration. Platelet count or function did not differ significantly after administration of any antimicrobial. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of commonly used antimicrobials in healthy dogs resulted in minor secondary hemostatic abnormalities, with no change in platelet count or function. Although these changes were clinically irrelevant in healthy dogs, additional studies of the effects of antimicrobial administration on hemostasis in animals with underlying disease processes are warranted.  相似文献   

3.
OBJECTIVE: To evaluate the effects of three different doses of sodium pentosan polysulphate (PPS) on haematological and haemostatic variables in adult horses. DESIGN: Eight adult standardbred horses were used. All horses received a single injection of 0, 3, 6, and 10 mg/kg of PPS at the beginning of each treatment week for 4 weeks so that by the end of the study all horses had received all four doses of PPS. Blood samples were collected at 0, 1, 2, 3, 4, 6, 8, 12, 24, 48, and 168 h after each weekly injection of PPS. Variables measured were packed cell volume, haemoglobin, red blood cell count, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelet count, white cell count, neutrophil count, lymphocyte count, eosinophil count, monocyte count, serum protein, fibrinogen, prothrombin time, and activated partial thromboplastin time (PTT). Data were analysed using an ANOVA. Significance was set at P < 0.05. RESULTS: There was a dose-dependent increase in PTT. A significant increase in PTT occurrred in all treatment groups when compared to horses receiving 0 mg/kg in which there was no change over time. The PTT values all returned to baseline by 48 h after treatment. The mean neutrophil count was higher 3 h after treatment when compared to time 0. Horses receiving 3 mg/kg of PPS had a higher lymphocyte count 4 h after injection, and those receiving 6 and 10 mg/kg had higher counts at 3,4,6 and 8 h after injection when compared to time 0. At 8 h after injection horses receiving 6 and 10 mg PPS had higher lymphocyte counts than horses not receiving PPS. CONCLUSIONS: PPS causes a dose-dependent prolongation of PTT in horses. At the dose rates currently recommended for treatment of joint problems in horses this increase was small and remained elevated from baseline for up to 24 h. Based on these findings doses of PPS up to 3 mg/kg should not be administered to horses within 24 h of high stress activities or where physical injury may occur.  相似文献   

4.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

5.
Pharmacokinetics of phenolsulfonphthalein (PSP) in horse and pony mares was determined after injection of 1 mg/kg of body weight, IV. A plasma PSP concentration vs time curve was described adequately in horses and ponies by an open, 2-compartment model. There were significant differences in the elimination phase parameters, apparent volume of distribution at steady state, and apparent volume of distribution of horses and ponies. The harmonic mean elimination half-life of PSP in horses was significantly longer (P less than 0.001) than that in the ponies (16.4 and 10.0 minutes, respectively). The mean plasma clearance of PSP in horses was significantly (P less than 0.05) less than that in ponies (0.00554 and 0.00701 L/min/kg, respectively). There was no difference between horses and ponies in the metabolic clearance of PSP. The fraction of the administered dose of PSP excreted in the urine in the first 15 minutes was not significantly different between horses and ponies.  相似文献   

6.
OBJECTIVE: To determine the pharmacokinetics of voriconazole following IV and PO administration and assess the distribution of voriconazole into body fluids following repeated PO administration in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURES: All horses received voriconazole (10 mg/kg) IV and PO (2-week interval between treatments). Plasma voriconazole concentrations were determined prior to and at intervals following administration. Subsequently, voriconazole was administered PO (3 mg/kg) twice daily for 10 days to all horses; plasma, synovial fluid, CSF, urine, and preocular tear film concentrations of voriconazole were then assessed. RESULTS: Mean +/- SD volume of distribution at steady state was 1,604.9 +/- 406.4 mL/kg. Systemic bioavailability of voriconazole following PO administration was 95 +/- 19%; the highest plasma concentration of 6.1 +/- 1.4 microg/mL was attained at 0.6 to 2.3 hours. Mean peak plasma concentration was 2.57 microg/mL, and mean trough plasma concentration was 1.32 microg/mL. Mean plasma, CSF, synovial fluid, urine, and preocular tear film concentrations of voriconazole after long-term PO administration were 5.163 +/- 1.594 microg/mL, 2.508 +/- 1.616 microg/mL, 3.073 +/- 2.093 microg/mL, 4.422 +/- 0.8095 microg/mL, and 3.376 +/- 1.297 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole distributed quickly and widely in the body; following a single IV dose, initial plasma concentrations were high with a steady and early decrease in plasma concentration. Absorption of voriconazole after PO administration was excellent, compared with absorption after IV administration. Voriconazole appears to be another option for the treatment of fungal infections in horses.  相似文献   

7.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

8.
Pharmacokinetics of flunixin meglumine in donkeys, mules, and horses   总被引:6,自引:0,他引:6  
OBJECTIVE: To compare serum disposition of flunixin meglumine after i.v. administration of a bolus to horses, donkeys, and mules. ANIMALS: 3 clinically normal horses, 5 clinically normal donkeys, and 5 clinically normal mules. PROCEDURE: Blood samples were collected at time zero (before) and 5, 10, 15, 30, and 45 minutes, and at 1, 1.25, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, and 8 hours after i.v. administration of a bolus of flunixin meglumine (1.1 mg/kg of body weight). Serum was analyzed in duplicate by the use of high-performance liquid chromatography for determination of flunixin meglumine concentrations. The serum concentration-time curve for each horse, donkey, and mule were analyzed separately to estimate noncompartmental pharmacokinetic variables RESULTS: Mean (+/-SD) area under the curve for donkeys (646 +/- 148 minute x microg/ml) was significantly less than for horses (976 +/- 168 minute x microg/ml) or for mules (860 +/- 343 minute x microg/ml). Mean residence time for donkeys (54.6 +/- 7 minutes) was significantly less than for horses (110 +/- 24 minutes) or for mules (93 +/- 30 minutes). Mean total body clearance for donkeys (1.78 +/- 0.5 ml/kg/h) was significantly different from that for horses (1.14 +/- 0.18 ml/kg/h) but not from that for mules (1.4 +/- 0.5 ml/kg/h). Significant differences were not found between horses and mules for any pharmacokinetic variable. CONCLUSION AND CLINICAL RELEVANCE: Significant differences exist with regard to serum disposition of flunixin meglumine in donkeys, compared with that for horses and mules. Consequently, flunixin meglumine dosing regimens used in horses may be inappropriate for use in donkeys.  相似文献   

9.
OBJECTIVE: To determine penetration of topically and orally administered voriconazole into ocular tissues and evaluate concentrations of the drug in blood and signs of toxicosis after topical application in horses. ANIMALS: 11 healthy adult horses. PROCEDURE: Each eye in 6 horses was treated with a single concentration (0.5%, 1.0%, or 3.0%) of a topically administered voriconazole solution every 4 hours for 7 doses. Anterior chamber paracentesis was performed and plasma samples were collected after application of the final dose. Voriconazole concentrations in aqueous humor (AH) and plasma were measured via high-performance liquid chromatography. Five horses received a single orally administered dose of voriconazole (4 mg/kg); anterior chamber paracentesis was performed, and voriconazole concentrations in AH were measured. RESULTS: Mean +/- SD voriconazole concentrations in AH after topical administration of 0.5%, 1.0%, and 3.0% solutions (n = 4 eyes for each concentration) were 1.43 +/- 0.37 microg/mL, 2.35 +/- 0.78 microg/mL, and 2.40 +/- 0.29 microg/mL, respectively. The 1.0% and 3.0% solutions resulted in significantly higher AH concentrations than the 0.5% solution, and only the 3.0% solution induced signs of ocular toxicosis. Voriconazole was detected in the plasma for 1 hour after the final topically administered dose of all solutions. Mean +/- SD voriconazole concentration in AH after a single orally administered dose was 0.86 +/- 0.22 microg/mL. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole effectively penetrated the cornea in clinically normal eyes and reached detectable concentrations in the AH after topical administration. The drug also penetrated noninflamed equine eyes after oral administration. Low plasma concentrations of voriconazole were detected after topical administration.  相似文献   

10.
OBJECTIVE: To evaluate cardiopulmonary effects of glycopyrrolate in horses anesthetized with halothane and xylazine. ANIMALS: 6 horses. PROCEDURE: Horses were allocated to 2 treatment groups in a randomized complete block design. Anesthesia was maintained in mechanically ventilated horses by administration of halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, i.v.). Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of glycopyrrolate or saline (0.9% NaCl) solution. Glycopyrrolate (2.5 microg/kg, i.v.) was administered at 10-minute intervals until heart rate (HR) increased at least 30% above baseline or a maximum cumulative dose of 7.5 microg/kg had been injected. Recovery characteristics and intestinal auscultation scores were evaluated for 24 hours after the end of anesthesia. RESULTS: Cumulative dose of glycopyrrolate administered to 5 horses was 5 microg/kg, whereas 1 horse received 7.5 microg/kg. The positive chronotropic effects of glycopyrrolate were accompanied by an increase in cardiac output, arterial blood pressure, and tissue oxygen delivery. Whereas HR increased by 53% above baseline values at 20 minutes after the last glycopyrrolate injection, cardiac output and mean arterial pressure increased by 38% and 31%, respectively. Glycopyrrolate administration was associated with impaction of the large colon in 1 horse and low intestinal auscultation scores lasting 24 hours in 3 horses. CONCLUSIONS AND CLINICAL RELEVANCE: The positive chronotropic effects of glycopyrrolate resulted in improvement of hemodynamic function in horses anesthetized with halothane and xylazine. However, prolonged intestinal stasis and colic may limit its use during anesthesia.  相似文献   

11.
OBJECTIVE: To determine the effects of short-term IV administration of hydrocortisone or equine growth hormone (eGH) or long-term IM administration of eGH to horses on tissue sensitivity to exogenous insulin. ANIMALS: 5 Standardbreds and 4 Dutch Warmblood horses. PROCEDURE: The euglycemic-hyperinsulinemic clamp technique was used to examine sensitivity of peripheral tissues to exogenous insulin 24 hours after administration of a single dose of hydrocortisone (0.06 mg/kg), eGH (20 microg/kg), or saline (0.9% NaCl) solution and after long-term administration (11 to 15 days) of eGH to horses. The amounts of metabolized glucose (M) and plasma insulin concentration (I) were determined. RESULTS: Values for M and the M-to-I ratio were significantly higher 24 hours after administration of a single dose of hydrocortisone than after single-dose administration of eGH or saline solution. After long-term administration of eGH, basal I concentration was increased and the mean M-to-I ratio was 22% lower, compared with values for horses treated with saline solution. CONCLUSIONS AND CLINICAL RELEVANCE: Increases in M and the M-to-I ratio after a single dose of hydrocortisone imply that short-term hydrocortisone treatment increases glucose use by, and insulin sensitivity of, peripheral tissues. Assuming a single dose of hydrocortisone improves sensitivity of peripheral tissues to insulin, it may be an interesting candidate for use in reducing insulin resistance in peripheral tissues of horses with several disease states. In contrast, long-term administration of eGH decreased tissue sensitivity to exogenous insulin associated with hyperinsulinemia. Therefore, increased concentrations of growth hormone may contribute to insulin resistance in horses with various disease states.  相似文献   

12.
Gentamicin sulfate-induced nephrotoxicosis was compared in 2 groups of horses fed different rations. Four horses were fed only alfalfa hay, and 4 other horses were fed only whole oats. Seven days after initiation of the diet, all horses were given gentamicin IV (5 mg/kg of body weight) every 12 hours for 22 days. Urinary gamma-glutamyl-transferase to urinary creatinine (UGGT:UCr) ratio was calculated daily, and serum concentration of gentamicin was measured at 1 and 12 hours after drug administration. Results indicated that horses fed oats had greater renal tubular damage than did horses fed alfalfa. Mean UGGT:UCr for horses fed alfalfa was 47.1 +/- 18.8 and was 100.0 +/- 19.0 for horses fed oats (P = 0.007). The UGGT:UCr in horses fed oats was greater than 100 for a total of 54 days; horses fed alfalfa had UGGT:UCr greater than 100 for only 7 days. Two horses not given gentamicin were fed only oats and 2 were fed only alfalfa. These horses had mean UGGT:UCr of 17.6 +/- 2.2 and 30.5 +/- 3.0, respectively. Mean peak and trough concentrations of gentamicin were statistically different for horses fed oats and those fed alfalfa (peak 23.16 +/- 1.87 and 14.07 +/- 1.79 micrograms/ml, respectively [P = 0.0001], and trough, 1.81 +/- 0.69 and 0.71 +/- 0.70 micrograms/ml, respectively [P = 0.0270]). Mean half-lives of gentamicin (estimated from peak and trough concentrations) for horses fed alfalfa (2.58 +/- 0.26 hours) and horses fed oats (2.88 +/- 0.27 hours) were not significantly different. Horses fed only oats had greater degree of gentamicin-induced nephrotoxicosis than did those fed only alfalfa.  相似文献   

13.
Heparin: A Review of its Pharmacology and Therapeutic Use in Horses   总被引:2,自引:1,他引:1  
Heparin is used clinically in horses to treat hemostatic abnormalities associated with severe gastrointestinal disease, septicemia, and endotoxemia. The primary anticoagulant effect of heparin is through the suppression of thrombin-dependent amplification of the coagulation cascade, and inhibition of thrombin-mediated conversion of fibrinogen to fibrin. Heparin may be of benefit in preventing the complications associated with hypercoagulable states such as jugular vein thrombosis, laminitis, and organ failure. Heparin may also be beneficial in the prevention of intraabdominal adhesions after gastrointestinal surgery, and in amelioration of hemodynamic abnormalities associated with endotoxic shock. Because a sequential rise in serumheparin concentration occurs during a uniform dosage regimen, a decreasing dosage regimen is recommended. The initial dose recommended is 150 U heparin/kg body weight subcutaneously, followed by 125 U heparin/kg body weight subcutaneously, every 12 hours for six doses. The dose should be decreased to 100 U heparin/kg body weight subcutaneously, every 12 hours, after the seventh dose. Anemia, hemorrhage, thrombocytopenia, and painful swelling at injection sites are complications of heparin administration in horses.  相似文献   

14.
OBJECTIVES: To measure serum polymyxin B concentration after single and repeated IV infusions in horses. ANIMALS: 5 healthy horses. PROCEDURES: In study 1, 1 mg (6,000 U) of polymyxin B/kg was given IV and blood samples were collected for 24 hours. In study 2, 1 mg of polymyxin B/kg was given IV every 8 hours for 5 treatments and blood samples were collected until 24 hours after the last dose. Polymyxin B concentration was measured as the ability to suppress nitrite production by murine macrophages stimulated with lipopolysaccharide and interferon-alpha. Urine was collected prior to the first drug infusion and 24 hours after the fifth drug infusion for determination of urinary gamma-glutamyl transferase (GGT)-to-creatinine ratios. RESULTS: In study 1, mean +/- SEM maximal serum polymyxin B concentration was 2.93 +/- 0.38 microg/mL. Polymyxin B was undetectable 18 hours after infusion. In study 2, maximal polymyxin B concentrations after the first and fifth doses were 2.98 +/- 0.81 microg/mL and 1.91 +/- 0.50 microg/mL, respectively. Mean trough concentration for all doses was 0.22 +/- 0.01 microg/mL. A significant effect of repeated administration on peak and trough serum concentration was not detected. Urine GGT-to-creatinine ratios were not affected by polymyxin B administration. CONCLUSIONS AND CLINICAL RELEVANCE: Polymyxin B given as multiple infusions to healthy horses by use of this protocol did not accumulate in the vascular compartment and appeared safe. Results support repeated IV use of 1 mg of polymyxin B/kg at 8-hour intervals as treatment for endotoxemia.  相似文献   

15.
OBJECTIVE: To compare analgesic effects of phenylbutazone administered at a dosage of 4.4 mg/kg/d (2 mg/lb/d) or 8.8 mg/kg/d (4 mg/lb/d) in horses with chronic lameness. DESIGN: Controlled crossover study. Animals-9 horses with chronic forelimb lameness. PROCEDURE: Horses were treated i.v. with phenylbutazone (4.4 mg/kg/d or 8.8 mg/kg/d) or saline (0.9% NaCl) solution once daily for 4 days. All horses received all 3 treatments with a minimum of 14 days between treatments. Mean peak vertical force (mPVF) was measured and clinical lameness scores were assigned before initiation of each treatment and 6, 12, and 24 hours after the final dose for each treatment. RESULTS: Compared with values obtained after administration of saline solution, mPVF was significantly increased at all posttreatment evaluation times when phenylbutazone was administered. Clinical lameness scores were significantly decreased 6 and 12 hours after administration of the final dose when phenylbutazone was administered at the low or high dosage but were significantly decreased 24 hours after treatment only when phenylbutazone was administered at the high dosage. No significant differences in mPVF and clinical lameness scores were found at any time when phenylbutazone was administered at the low versus high dosage. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the high dosage of phenylbutazone was not associated with greater analgesic effects, in terms of mPVF or lameness score, than was the low dosage. Considering that toxicity of phenylbutazone is related to dosage, the higher dosage may not be beneficial in chronically lame horses.  相似文献   

16.
Pharmacokinetics of ciprofloxacin in ponies   总被引:8,自引:0,他引:8  
The pharmacokinetics of ciprofloxacin was investigated in healthy, mature ponies. Ciprofloxacin was administered intravenously to six ponies at a dose of 5 mg per kg body weight. Seven days later, ciprofloxacin was administered orally to each pony at the same dose. Intravenous ciprofloxacin concentration vs. time data best fit a two-compartment open model with first-order elimination from the central compartment. Mean plasma half-life, based on the terminal phase, was 15 7.8 9 min (harmonic mean). Total body clearance of ciprofloxacin was 18.12 ± 3.99 mL/min/kg. Volume of distribution at steady-state was 3.45 ± 0.72 L/kg. From the pharmacokinetic data and reported minimum inhibitory concentrations for equine gram-negative pathogens, the appropriate dosage of ciprofloxacin was determined to be 5.32 mg per kg body weight at 12 h intervals. Bioavailability of oral ciprofloxacin in ponies was 6.8 ± 5.33%. Owing to the poor bioavailability, a dosage regimen could not be proposed for oral ciprofloxacin administration in horses. Ciprofloxacin concentrations were determined in tissues and body fluids at 1, 2 and 4 h after intravenous administration. At all times, tissue concentrations exceeded plasma concentrations of ciprofloxacin. Highest concentrations were achieved in kidneys and urine. Potentially therapeutic concentrations were obtained in cerebrospinal and joint fluid, but low concentrations were achieved in aqueous humour.  相似文献   

17.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of high-concentration formulation of buprenorphine (1.8 mg mL–1; Simbadol) following subcutaneous (SC) administration in horses.Study designProspective, randomized, crossover trial.AnimalsA group of six healthy adult horses weighing 521–602 kg.MethodsOn three occasions, Simbadol (0.005 mg kg–1; treatment S5), (0.0025 mg kg–1; treatment S2.5) or saline (treatment SAL) were administered SC at least 7 days apart in random order. Electrical nociceptive threshold (ENT) measured on the neck region, physiologic variables, locomotor activity, degree of restlessness and presence of excitatory signs were measured at baseline and for up to 48 hours after injection. Blood was collected for pharmacokinetic analysis at the same time intervals and plasma buprenorphine concentration (Cp) measured using liquid chromatography–tandem mass spectrometry.ResultsBuprenorphine was quantifiable in all horses from 15 minutes after administration up to 8–12 hours. ENT was significantly increased in treatment S2.5 compared with treatment SAL at 0.75–6 hours after treatment. Increase in locomotor activity and compulsive behavior were recorded in all horses after Simbadol, and degree of restlessness was significantly higher in treatment S5 than SAL for a sustained time. Gastrointestinal motility significantly decreased in all horses after Simbadol and returned to baseline by 16 hours after treatment.Conclusions and clinical relevanceIn horses, SC Simbadol was rapidly absorbed and Cp decreased rapidly. Side effects commonly seen in horses after opioids were observed in both Simbadol treatments, but degree of opioid-induced excitement lasted significantly longer in treatment S5. Simbadol (0.0025 mg kg–1) SC has the potential to be used clinically to treat pain in horses. However, at this dose, duration of antinociceptive effects was not longer than that reported for conventional buprenorphine, and side effects, including reduction in gastrointestinal motility and increased locomotor activity, were documented.  相似文献   

18.
OBJECTIVE: To characterize the effect of general anesthesia and minor surgery on renal function in horses. ANIMALS: 9 mares with a mean (+/- SE) age and body weight of 9+/-2 years and 492+/-17 kg, respectively. PROCEDURE: The day before anesthesia, urine was collected (catheterization) for 3 hours to quantitate baseline values, and serum biochemical analysis was performed. The following day, xylazine (1.1 mg/kg, IV) was administered, and general anesthesia was induced 5 minutes later with diazepam (0.04 mg/kg, IV) and ketamine (2.2 mg/kg, IV). During 2 hours of anesthesia with isoflurane, Paco2 was maintained between 48 and 52 mm Hg, and mean arterial blood pressure was between 70 and 80 mm Hg. Blood and urine were collected at 30, 60, and 120 minutes during and at 1 hour after anesthesia. RESULTS: Baseline urine flow was 0.92+/-0.17 ml/kg/h and significantly increased at 30 and 60 minutes after xylazine administration (2.14+/-0.59 and 2.86+/-0.97 ml/kg/h respectively) but returned to baseline values by the end of anesthesia. Serum glucose concentration increased from 12+/-4 to 167+/-8 mg/dl at 30 minutes. Glucosuria was not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Transient hyperglycemia and an increase in rine production accompanies a commonly used anesthetic technique for horses. The increase in urine flow is not trivial and should be considered in anesthetic management decisions. With the exception of serum glucose concentration and urine production, the effect of general anesthesia on indices of renal function in clinically normal horses is likely of little consequence in most horses admitted for elective surgical procedures.  相似文献   

19.
OBJECTIVE: To determine cardiopulmonary effects of total IV anesthesia with propofol and medetomidine in ponies and effect of atipamezole on recovery. ANIMALS: 10 ponies. PROCEDURE: After sedation was induced by IV administration of medetomidine (7 microg/kg of body weight), anesthesia was induced by IV administration of propofol 12 mg/kg) and maintained for 4 hours with infusions of medetomidine (3.5 microg/kg per hour) and propofol 10.07 to 0.11 mg/kg per minute). Spontaneous respiration was supplemented with oxygen. Cardiopulmonary measurements and blood concentrations of propofol were determined during anesthesia. Five ponies received atipamezole (60 microg/kg) during recovery. RESULTS: During anesthesia, mean cardiac index and heart rate increased significantly until 150 minutes, then decreased until cessation of anesthesia. Mean arterial pressure and systemic vascular resistance index increased significantly between 150 minutes and 4 hours. In 4 ponies, PaO2 decreased to < 60 mm Hg. Mean blood propofol concentrations from 20 minutes after induction onwards ranged from 2.3 to 3.5 microg/ml. Recoveries were without complications and were complete within 28 minutes with atipamezole administration and 39 minutes without atipamezole administration. CONCLUSIONS AND CLINICAL RELEVANCE: During total IV anesthesia of long duration with medetomidine-propofol, cardiovascular function is comparable to or better than under inhalation anesthesia. This technique may prove suitable in equids in which prompt recovery is essential; however, in some animals severe hypoxia may develop and oxygen supplementation may be necessary.  相似文献   

20.
OBJECTIVE: To describe in horses and ponies a laparoscopic ovariectomy technique facilitated by electrosurgical instrumentation. STUDY DESIGN: Elective ovariectomy was performed in 23 mares using laparoscopic electrosurgical instrumentation. ANIMALS OR SAMPLE POPULATION: Twenty-three mares (13 horses, 10 ponies), aged from 2 to 21 years and weighing 90 to 545 kg. METHODS: Food was withheld for a minimum of 12 hours. Mares were sedated with detomidine hydrochloride (0.02 to 0.03 mg/kg) or xylazine hydrochloride (0.5 to 1.0 mg/kg). Excluding the pony mares, all other mares were restrained in stocks. Portal sites in the paralumbar fossa region were desensitized with 2% mepivacaine. Abdominal insufflation was achieved through a teat cannula positioned in the ventral abdomen or a Verres-type needle placed through the paralumbar fossa. After trocar and laparoscope insertion, the ipsilateral ovary and mesovarium were identified, and the mesovarium, tubal membrane, and proper ligament were infiltrated with 2% mepivacaine. The mesovarium was coagulated using bipolar or monopolar electrosurgical forceps and transected sequentially from cranial to caudal until the ovary was completely freed and then removed. The contralateral ovary was removed in a similar fashion through the opposite paralumbar fossa. RESULTS: Bipolar and monopolar electrosurgical forceps were easy to use and provided adequate coagulation of vessels within the mesovarium. Two mares were euthanatized after the procedure for unrelated reasons. One mare had mild signs of colic 24 hours after ovariectomy. In 1 pony mare, the incision used to remove one ovary dehisced on the 5th postoperative day and was allowed to heal by second-intention. No long-term complications had occurred in 11 horses and 10 ponies, 6 to 24 months after surgery. CONCLUSION: Laparoscopic ovariectomy and hemostasis of the mesovarium can be easily accomplished using electrosurgical instrumentation. CLINICAL RELEVANCE: Standing laparoscopic ovariectomy, using electrosurgical instrumentation, is an effective and safe technique to provide hemostasis of the mesovarium in mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号