首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
GluB-4是水稻种子谷蛋白的编码基因,在种子成熟过程中,由GluB-4启动子调控,在胚乳中特异地表达。以水稻基因组DNA为模板,通过PCR扩增技术得到GluB-4启动子片段,序列分析结果表明:获得的启动子片段的大小为1 560 bp,与已报道的该启动子序列相比较,其核苷酸序列同源性为99.8%。该启动子区域含有TATA-box,CAAT-box,GCN4基序,Skn-1基序等胚乳特异表达启动子所必需的正调控元件,同时还含有高水平转录调控因子5UTR Py-rich stretch序列。利用该启动子构建了植物种子特异表达载体pCGB4P,为进一步的研究工作奠定了基础。  相似文献   

2.
针对γ-醇溶蛋白基因家族成员,设计了覆盖其启动子及全长编码区的3对特异引物,从强筋小麦品种陕253中克隆了8条1 000 bp左右的片段(GenBank登录号为GQ871770~GQ871777)。该片段群包含典型醇溶蛋白亚基的完整编码序列,并在重复区存在丰富的插入/缺失(InDel);推导的氨基酸序列显示,8个基因均具有γ-醇溶蛋白亚基的典型结构特征,其中GQ871771为假基因,4条序列(GQ871770、GQ871772、GQ871776和GQ87177)具有9个半胱氨酸残基;启动子区序列分析表明,GQ871770、GQ871772、GQ871774和GQ871776在胚乳框存在6处SNP变异,其中两处变异发生于GCN4基序内,利用WebLogo3在线构建了储藏蛋白更具代表意义的30 bp保守胚乳盒模式。进化分析证实克隆序列属于γ-醇溶蛋白基因家族成员。  相似文献   

3.
针对γ-醇溶蛋白基因家族成员,设计了覆盖其启动子及全长编码区的3对特异引物,从强筋小麦品种陕253中克隆了8条1000 bp左右的片段(GenBank登录号为GQ871770~GQ871777).该片段群包含典型醇溶蛋白亚基的完整编码序列,并在重复区存在丰富的插入/缺失(InDel);推导的氨基酸序列显示,8个基因均具有γ-醇溶蛋白亚的典型结构特征,其中GQ871771为假基因,4条序列(GQ871770、GQ871772、GQ871776和GQ87177)具有9个半胱氨酸残基;启动子区序列分析表明,GQ871770、GQ871772、GQ871774和GQ871776在胚乳框存在6处SNP变异,其中两处变异发生于GCN4基序内,利用WebLogo3在线构建了储藏蛋白更具代表意义的30bp保守胚乳盒模式.进化分析证实克隆序列属于γ-醇溶蛋白基因家族成员.  相似文献   

4.
大豆紫色酸性磷酸酶基因GmPAP14受低磷诱导表达,其超表达显著提高植物有机磷利用效率,为进一步探究其调控机制,本研究以GmPAP14cDNA序列检索大豆参考基因组,获取基因上游启动子序列,设计引物克隆了中黄15 GmPAP14启动子序列。利用PLACE与PlantCARE预测启动子调控元件发现,该序列中含有增强子调控元件、组织特异表达元件,根特异表达元件、转录因子PHR1结合的PIBS元件等。构建了GmPAP14启动子3个5’端缺失片段融合GUS的植物表达载体PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS,并通过Floraldip法获得转基因拟南芥。利用GUS染色和活性测定分析GmPAP14启动子不同片段表达活性发现,正常磷条件下各片段转基因拟南芥均在根尖表达,低磷条件下GUS染色可扩展到成熟区和根毛,另外转PGmPAP14-2238-GUS植株的GUS活性最高。这些结果为后续的基因调控研究奠定重要基础。  相似文献   

5.
为了研究胚乳直链淀粉含量有显著差异的水稻品种胚乳SBEIIb基因表达特性及其启动子,本研究根据日本晴的基因组序列,采用PCR技术克隆了6个品种的SBEIIb启动子序列。结果表明,供试品种的直链淀粉含量在不同的灌浆时期都存在着显著差异;在灌浆过程中胚乳SBEIIb基因的m RNA表达量呈单峰曲线变化,灌浆前期m RNA表达量平稳升高,中期出现峰值,后期快速降低,而且高直链淀粉含量的品种,其胚乳SBEIIb基因m RNA的表达量高,低直链淀粉含量的品种,其胚乳淀SBEIIb基因m RNA的表达量低;不同类型水稻品种SBEIIb基因启动子序列的同源性高达99%以上,SBEIIb基因启动子序列的保守性很强;品种间有性杂交子代SBEIIb基因的启动子序列可发生碱基的变化,但没有导致启动子核心元件发生变化;胚乳SBEIIb基因m RNA表达量的变化受SBEIIb基因启动子的调控影响很少。本研究结果为进一步研究淀粉分支酶基因的表达机制提供理论基础。  相似文献   

6.
拟南芥中花特异表达启动子PCHS的分离及其功能初探   总被引:2,自引:0,他引:2  
根据已发表的拟南芥启动子序列(AF248988)设计合成一对引物,以拟南芥(Arabidopsis)基因组DNA为模板,通过PCR技术获得了约含500 bp大小的DNA片段,经纯化后测序得到531 bp的目的片段。通过DNAman进行序列分析表明,与文献报道的PCHS启动子序列有99%的同源,含有四个花特异表达的调控元件。将此启动子替换pBI121上的CaMV35S启动子构建植物表达载体,农杆菌介导法浸染矮牵牛花、茎、叶、根。GUS瞬时表达结果表明,在花上出现较深的蓝色,而在茎上的蓝色很浅,在根和叶中不显蓝色,初步确定该启动子具有较强的花特异表达特性。  相似文献   

7.
拟南芥菜花药绒毡层启动子的克隆和序列分析   总被引:7,自引:0,他引:7  
以拟南芥菜(Arabid op sis thaliana)基因组DNA为模板 , 通过PCR扩增得到绒毡层特异 表达基因A9的启动子片段, 克隆到pUC18载体上。 序列分析表明, 该启动子大小为36 0 bp , RNA聚合酶识别序列TATA box, 花药特异表达和增强序列TGTGG、 TGTGA两个Motifs皆完整 , 与已报道的序列比较仅有3个核苷酸发生改变, 同源性为99.  相似文献   

8.
以拟南芥基因组DNA为模板,通过PCR扩增得到逆境胁迫诱导表达基因rd29A的启动子片段,将其克隆到pUC19质粒中进行序列分析。结果表明,获得的启动子片段大小为937bp,与已报道的该启动子序列比较,其核苷酸序列同源性为99.8%。  相似文献   

9.
为了利用PCR技术得到甘蓝型油菜A7-FT基因启动子序列,根据甘蓝型油菜全基因组序列,利用启动子在线预测软件预测其功能与结构,根据其预测的顺式元件的分布,从5′端开始缺失的方式获得5个不同片段长度的启动子序列。构建含不同片段长度启动子的GUS基因表达载体,利用农杆菌介导拟南芥,得到T_2幼苗,经过GUS染色与脱色,探讨A7-FT基因启动子的功能,为研究甘蓝型油菜开花调控机制提供理论基础。通过PCR技术从甘蓝型油菜湘油15号基因DNA中获得A7-FT基因启动子序列。利用PLACE和PlantCARE在线工具对该段序列进行预测,发现A7-FT基因启动子除了存在启动子核心元件CAATbox和TATAbox,还有光应答元件、激素应答元件、胚乳表达应答元件、抗逆性应答元件、生理控制相关的顺式作用元件。基于预测的顺式作用元件的分布情况,设计特异性引物,克隆不同片段长度启动子,与pCAMBIA1303载体构建5′端缺失载体,分别命名为M1、M2、M3、M4、M5。通过农杆菌介导拟南芥,GUS染色与脱色结果显示,在-1 549~-238可能存在一些负调控元件的结合位点,而-238~+1区域是该启动子的核心区段。  相似文献   

10.
小麦穗发芽抗性相关Vp1基因启动子的分离及功能验证   总被引:4,自引:0,他引:4  
成熟期穗发芽严重影响小麦产量和品质。Vp1是调节胚发育, 促进胚成熟和休眠的重要转录因子, 对小麦种子休眠和穗发芽抗性具有重要作用。本研究分离了普通小麦B基因组Vp1基因的启动子, 生物信息学预测结果表明, 其含有9个脱落酸响应元件ABRE、2个DREB和6个MYB干旱响应元件、3个赤霉素响应元件GARE、1个水杨酸响应元件TCA-E、2个茉莉酸甲酯响应元件TGACG-motif、4个SKn-1和1个RYREPE胚乳特异表达元件。采用5′端缺失的方法, 构建了系列含Vp1启动子不同区段融合GUS报告基因的瞬时表达载体和植物表达载体。通过基因枪转化小麦愈伤组织, 瞬时表达结果显示, Vp1启动子在无诱导的情况下不能启动GUS基因表达, 在低温、ABA、GA、PEG和NaCl诱导后可以启动GUS基因表达, 表现诱导表达特性, 且其诱导表达强度随启动子缺失片段长度变短而减弱。利用Gateway方法成功构建了6个启动子各缺失片段类型的植物表达载体, 并通过农杆菌介导转化四倍体小麦Stewart, 获得转基因植株。该启动子可有效启动GUS基因在转基因植株的花药、糊粉层、穗轴及根中表达, 其他组织中没有表达。当启动子片段大于660 bp时, 外源ABA可诱导启动子启动GUS基因在转基因植株茎节中的表达。  相似文献   

11.
水稻谷蛋白的一个新基因克隆及表达分析   总被引:1,自引:0,他引:1  
与其他禾本科作物以醇溶蛋白为主不同,水稻种子含有醇溶蛋白和谷蛋白两种主要蛋白质贮藏形式。其中,谷蛋白约占胚乳蛋白总量的70%~80%。水稻谷蛋白是由多基因家族编码合成的,到目前为止至少已克隆获得了9个全长cDNA,根据这些cDNA编码的氨基酸序列同源性可将谷蛋白分为A、B两个亚家族。B亚族谷蛋白成员富含赖氨酸等人体必需氨基酸,与稻米的营养品质直接相关,因此挖掘、利用B亚族基因成员对于改良稻米蛋白品质性状至关重要。本文报道了以32P标记的谷蛋白基因GluB-2 cDNA片段为探针筛选水稻胚乳cDNA文库获得1个新的水稻谷蛋白基因全长cDNA。序列分析显示该基因核苷酸序列共1588 bp,含有1个由495个氨基酸残基组成的开放阅读框,编码蛋白分子量约为56 kD。推导的氨基酸序列与其他已知谷蛋白基因家族成员间序列相似性介于57.8%~97.8%之间,并与B亚族谷蛋白基因的同源性更高,因此命名为GluB-7(GenBank注册号AY987390)。Northern杂交显示,GluB-7具有高度的胚乳表达特性。  相似文献   

12.
为了获得适用于构建工业酿酒酵母整合型表达载体的组成型启动子,以工业酿酒酵母南阳K基因组DNA为模板,采用PCR方法扩增得到了磷酸甘油酸激酶基因起始密码前的启动子片段2个,其中长片段781 bp,命名为PGK1(GenBank Acession No. FJ415226)。NCBI Blast软件分析结果表明,PGK1核苷酸序列与酿酒酵母染色体Ⅲ上PGK启动子(GenBank Acession No. X59720)相似性为99%,序列中含有基因表达所需的基本调控元件TATA-box和CAAT-box等。功能分析表明PGK1能驱动整合在工业酿酒酵母基因组上的外源基因葡萄糖淀粉酶基因的表达。综上表明成功克隆得到PGK1启动子,为工业酿酒酵母表达载体的构建奠定了基础。  相似文献   

13.
利用PCR的方法从大豆品种"吉豆2号"基因组DNA中克隆得到大豆球蛋白启动子G1p,长度约为686 bp,PLACE在线启动子预测工具分析表明:序列中含有多种典型的种子特异性表达元件。将克隆得到的G1p取代pCAMBIA1301中的CaMV35S启动子,构建于G1p与GUS基因融合表达的载体pCAM-G1p,通过农杆菌介导的方法在大豆根、茎、叶和种子中进行瞬时表达分析结果显示,仅能在种子中检测到GUS活性,而在根、茎和叶其他组织中基本检测不到GUS活性。说明G1基因上游686 bp片段具有种子特异性启动子的功能,G1p是一个比较高效的种子特异性启动子。  相似文献   

14.
小鼠脂肪型脂肪酸结合蛋白(FABP4)的启动子/增强子元件是脂肪组织特异性启动元件,为了鉴定该元件在牛体细胞中的启动效果,首先以小鼠肝脏DNA为模板,通过PCR克隆得到5.9 kb的FABP4基因启动子片段,连入p MD19-T载体后进行酶切及测序鉴定,经Eco T 22I酶切去除非核心启动子区后精简为2.3 kb的片段,通过SacⅡ酶切将5.9 kb片段和2.3 kb片段的启动子连入红色荧光蛋白载体p Ds-Red 2-1的多克隆位点,构建为表达质粒p MF5.9-Red和p MF2.3-Red,利用脂质体法将上述载体分别转染牛脂肪间充质干细胞及牛胎儿成纤维细胞,24 h后实时定量PCR检测红色荧光蛋白转录水平。结果表明,克隆得到的5.9 kb小鼠FABP4启动子片段酶切及测序结果正确,与红色荧光蛋白载体相连的载体p MF5.9-Red和p MF2.3-Red酶切结果与预期相符,表达载体构建成功,实时定量PCR结果显示以上2种细胞在转染后24 h红色荧光蛋白均有表达,且p MF2.3-Red的转录水平是p MF5.9-Red的2倍以上。成功构建了小鼠FABP4启动子驱动红色荧光蛋白表达载体p MF5.9-Red和p MF2.3-Red,5.9 kb片段和2.3 kb片段均可驱动外源基因在牛体细胞中转录,且2.3 kb片段启动效率高于5.9 kb片段。  相似文献   

15.
 以新疆陆地棉品种新陆早19的DNA为模板,克隆了棉花纤维特异启动子GhCesA4,GenBank登录号:EU183119 ,将启动子基因序列克隆到pMD19-T载体中,由载体通用引物M13-47、RV-M 经PCR鉴定获得pMD19-T/GhCesA4重组载体。测序和序列分析表明,该启动子序列由1503 bp核苷酸组成,与GenBank中GhCesA4基因启动子序列同源性高达98%。分别用限制性内切酶ClaⅠ和BamⅠ双酶切重组质pMD19-T/GhCesA4和双元植物表达载体pBI121,分别回收pMD19-T/GhCesA4重组质粒中的GhCesA4小片段和pBI121 植物表达载体中缺失CaMV35S组成型启动子的大片段,经连接、转化、酶切及测序鉴定,获得由GhCesA4驱动报告基因GUS的新型植物表达载体,命名为pBI-GhCesA4  相似文献   

16.
为了获得小麦wx-B1a基因的特异RNAi表达载体,以小麦品种‘京花1号’开花12天的籽粒为材料,用天根公司植物总RNA提取试剂盒提取总RNA,以wx-B1a基因(GenBank NO:AB019623)的cDNA序列设计一对特异性引物,利用RT-PCR克隆了wx-B1a基因部分cDNA片段。Blastn结果显示,它与GenBank上报道的Triticum aestivum wx-1 gene(GenBank NO:EU719611.1)同源。通过酶切连接将此片段分别置于拟南芥FAD2的Intron1(GenBank NO:AJ271841)的上、下游,然后将此发夹结构置于小麦HMW-GS 1Dx5启动子的下游,从而构建了小麦wx-B1a基因的特异RNAi表达载体pBAC47p-wx-B1aIR。从而为下一步转化高产强筋小麦品种培育优质面条专用小麦奠定基础。  相似文献   

17.
花生Δ~9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析   总被引:1,自引:0,他引:1  
Δ~9-硬脂酰-ACP脱氢酶(SAD)是决定植物体内饱和脂肪酸与不饱和脂肪酸比值的关键酶。以花生品种豫花9326基因组DNA为模板,通过基因组步移技术,克隆到花生Δ~9-硬脂酰-ACP脱氢酶基因(Ah SAD)起始密码子ATG上游720 bp片段,利用5'RACE方法获得了该基因的5'UTR序列,通过序列比对确定720 bp片段为Ah SAD启动子区域。PLACE在线启动子预测分析表明,该序列具有真核生物启动子必需的核心元件TATA-box和CAAT-box,含有多个与光诱导和激素响应相关顺式序列元件。将Ah SAD启动子片段替换pBI121质粒中的CaMV35S启动子驱动下游GUS基因表达,构建植物表达载体pBI-PAh SAD。通过农杆菌介导法转化拟南芥和在花生不同组织中瞬时表达,利用GUS组织化学染色研究其表达特性。表明在拟南芥和花生受体中,AhSAD启动子主要调控下游基因在根、茎、叶片和子叶中表达,在花生的果针中也检测到GUS活性;拟南芥的茎生叶只有叶脉中具有GUS活性,而花生整个叶片中都具有GUS活性。  相似文献   

18.
以吉豆2号基因组为模板,通过TAIL PCR方法,扩增得到大豆硬脂酸-ACP脱饱和酶基因启动子片段SACPD-Cp。PLACE在线启动子预测分析表明, 该序列中含有多种典型的种子特异性表达序列元件。将SACPD-Cp片段取代pCAMBIA1301质粒中的CaMV35S启动子,构建表达载体pCAM-SACPD-Cp,通过农杆菌介导法在大豆组织中进行瞬时表达,GUS组织化学染色和荧光定量研究其表达特性。结果表明, SACPD-Cp驱动GUS基因在种子中的表达活性是CaMV35S启动子的93.01%;SACPD-Cp启动子与现已知启动子无同源性,仅在大豆种子中检测到GUS活性,而在根、茎和叶组织中均未检测到GUS活性,证实 SACPD-Cp是一个新的种子特异性启动子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号