首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A high cyclic adenosine monophosphate (cAMP) level in fully-grown immature oocytes prevents meiotic resumption. In Xenopus, inhibitory cAMP is synthesized within oocytes depending on a stimulatory alpha-subunit of G-protein (Gsalpha). In the present study, we examined whether ooplasmic Gsalpha is involved in meiotic arrest of porcine oocytes. First, we studied the presence of Gsalpha molecules in porcine oocytes by immunoblotting, and this suggested the presence of reported isoforms (45 and 48 kDa) not only in cumulus cells but also in porcine oocytes. Then we injected an anti-Gsalpha antibody into porcine immature oocytes and found that inhibition of ooplasmic Gsalpha functions significantly promoted germinal vesicle breakdown of the oocytes, whose spontaneous meiotic resumption was prevented by 3-isobutyl-l-methylxanthine (IBMX) treatment. Although cyclin B synthesis and M-phase promoting factor (MPF) activation were largely prevented until 30 h of culture in IBMX-treated oocytes, injection of anti-Gsalpha antibody into these oocytes partially recovered cyclin B synthesis and activated MPF activity at 30 h. These results suggest that meiotic resumption of porcine oocytes is prevented by ooplasmic Gsalpha, which may stimulate cAMP synthesis within porcine oocytes, and that synthesized cAMP prevents meiotic resumption of oocytes through the signaling pathways involved in MPF activation.  相似文献   

2.
Mos and the mitogen-activated protein kinase (MAPK) cascade have been established as crucial regulators of second meiotic metaphase arrest, the so-called CSF arrest, in mammalian oocytes. They are also thought to play a role in regulating mitotic metaphase arrest of early mammalian embryos. In the present study, we examined whether mitotic arrest is induced in early mouse embryos by activation of extracellular signal-regulated kinases (ERKs), which are major MAPKs in mouse eggs, and their substrate, p90Ribosomal S6 kinase (RSK), as reported in Xenopus embryos. Wild-type Mos (wt-Mos), degradation-resistant Mos mutant (P2G-Mos) or constitutive active mutant of MAPK/ERK kinase, MEK (SDSE-MEK), was expressed in early mouse embryos by injecting the respective expression vectors into the pronucleus of fertilized eggs, and the developmental rates were then examined up to 72 h after insemination. Expression of P2G-Mos and SDSE-MEK succeeded in activating ERKs and RSK in developing mouse embryos, while wt-Mos failed to activate them in spite of expression of mos mRNA, indicating that the wt-Mos protein is unstable in early mouse embryos. Although the activated levels of ERKs and RSK in the vector-injected embryos were comparable to those of meiotically arrested mouse oocytes, their developmental rates were identical to those of the control embryos. These results suggest that activation of MAPK and RSK does not induce mitotic arrest in early mouse embryos. The present study indicates that there are large physiological differences between early mouse embryos and mouse oocytes and that CSF arrest of mouse eggs in mitosis should be discussed separately from that in meiosis.  相似文献   

3.
Ovarian immature oocytes accumulate many dormant maternal mRNAs, which have short poly(A) tails. Cytoplasmic‐polyadenylation‐element binding protein (CPEB) has been reported to play key roles for the elongation of the tails and the translation of these mRNAs in Xenopus oocytes. However, the functions of CPEB in meiotic resumption have not yet been established in mammalian oocytes. The present study examined the roles of porcine CPEB in Cyclin B syntheses and meiotic resumption of porcine oocytes. Porcine CPEB1 (pCPEB1) cDNA was cloned from total RNA of immature oocytes by RT‐PCR. The overexpression of pCPEB1 by mRNA injection into immature oocytes increased Cyclin B expression and the rate of meiotic resumption. Conversely, the inhibition of endogenous CPEB by expression of a dominant‐negative mutant pCPEB1 (AA‐CPEB), which replaced the expected phosphorylation sites with alanines, had the effect of inhibiting Cyclin B synthesis, ribosomal S6 kinase phosphorylation (an indicator of Mos activity), and meiotic resumption. The inhibition of porcine Aurora A by an injection of antisense RNA enhanced the inhibitory effects of AA‐CPEB. These results suggest the involvement of mammalian CPEB1 in Cyclin B syntheses and meiotic resumption in mammalian oocytes. In addition, the phosphorylation sites of pCPEB1 were identified and are suggested to be phosphorylated by porcine Aurora A.  相似文献   

4.
The present study was undertaken to determine the precise stage of growth at which the ability to resume meiosis is acquired in bovine oocytes. Oocytes of various sizes were isolated from ovaries by mechanical dissection using an 18-gauge needle followed by a razor blade. This method yielded an average of 26.2 +/- 7.4 growing and fully grown oocytes from an ovary. Cumulus-enclosed oocytes were cultured in vitro in tissue culture medium 199 containing 10% fetal calf serum. Oocytes less than or equal to 90 microns in diameter did not resume meiosis. However, germinal vesicle breakdown was observed in oocytes whose diameters exceeded 91 microns. Polar body formation was observed in oocytes with diameters exceeding 101 microns. About 80% of the oocytes with diameters greater than or equal to 121 microns were able to extrude the polar body. The percentage of large oocytes (101 to 120 microns) with first polar body increased when incubated in medium containing dibutyryl cyclic adenosine 3',5'-monophosphate; however, oocytes 90 to 101 microns did not extrude the first polar body even when cultured in a medium containing dibutyryl cyclic adenosine 3',5'-monophosphate. These observations indicate that the capability to resume meiosis is acquired gradually during development of oocytes and that dibutyryl cyclic adenosine 3',5'-monophosphate can improve the meiotic competence of bovine oocytes in culture.  相似文献   

5.
WEE1B, an oocyte-specific kinase, phosphorylates the CDC2 inhibitory site and maintains the meiotic arrest of oocytes at the first meiotic prophase in several mammalian species. However, the molecular mechanisms controlling WEE1B activity have not been fully examined in species other than mice. In the present study, we analyzed the regulation mechanisms of porcine WEE1B (pWEE1B), focusing on the cAMP-dependent protein kinase (PKA) phosphorylation site and intracellular localization. As the PKA phosphorylation site in mouse WEE1B (mWEE1B) was not conserved in pWEE1B, we predicted that four serine residues would be phosphorylatable by PKA in pWEE1B (Ser77, Ser118, Ser133 and Ser149) and constructed FLAG-tagged replaced-pWEE1Bs, in which each of the PKA-phosphorylatable serines was mutated into a non-phosphorylatable alanine. We injected one of their mRNAs into porcine immature oocytes and found that the Ser77-replaced pWEE1B lost the WEE1B function, whereas the wild-type and other replaced-pWEE1Bs could maintain the meiotic arrest of oocytes. Next, the localization of pWEE1B was examined by immunohistochemistry, and exclusive nuclear localization was revealed in the fully grown oocytes. We generated a nuclear localization signal (NLS)-deleted pWEE1B (ΔNLS-pWEE1B) and then overexpressed it in porcine immature oocytes. We found that ΔNLS-pWEE1B was distributed uniformly in the cytoplasm and could not maintain the meiotic arrest of porcine oocytes. These results suggest that pWEE1B is activated after phosphorylation of the Ser77 residue, which is different from the phosphorylation site that activates mWEE1B; that pWEE1B is localized in the nucleus; and that the nuclear localization is essential for its function.  相似文献   

6.
Polo‐like kinase 1 (Plk1), a type of serine/threonine protein kinase, has been implicated in various functions in the regulation of mitotic processes. However, these kinase's roles in meiotic division are not fully understood, particularly in the meiotic maturation of porcine oocytes. In this study, the expression and spatiotemporal localization of Plk1 were initially assessed in the meiotic process of pig oocytes by utilizing Western blotting with immunofluorescent staining combined with confocal microscopy imaging technique. The results showed that Plk1 was expressed and exhibited a dynamic subcellular localization throughout the meiotic process. After germinal vesicle breakdown (GVBD), Plk1 was detected prominently around the condensed chromosomes and subsequently exhibited a similar subcellular localization to α‐tubulin throughout subsequent meiotic phases, with particular enrichment being observed near spindle poles at MI and MII. Inhibition of Plk1 via a highly selective inhibitor, GSK461364, led to the failure of first polar body extrusion in porcine oocytes, with the majority of the treated oocytes being arrested in GVBD. Further subcellular structure examination results indicated that Plk1 inhibition caused the great majority of oocytes with spindle abnormalities and chromosome misalignment during the first meiotic division. The results of this study illustrate that Plk1 is critical for the first meiotic division in porcine oocytes through its influence on spindle organization and chromosome alignment, which further affects the ensuing meiotic cell cycle progression.  相似文献   

7.
The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.  相似文献   

8.
The aim of this study was to establish a culture system to improve the meiotic competence of porcine oocyte-granulosa cell complexes (OGCs) obtained from preantral or early antral follicles. Porcine OGCs were recovered from follicles with diameters of 230-300 (preantral follicles), 300-500, and 500-700 mum (early antral follicles) using scalpels. The OGCs were cultured for 2 weeks in culture medium. We examined the effects of the sizes of the follicles from which OGCs were recovered, the concentrations of polyvinylpyrrolidone (PVP, 0-8%) in the culture medium, and 2 types of culture dish (Falcon 3002 vs 1007) on formation of the antrum of OGCs. After culture, the oocytes were matured for 44 h to assess their meiotic competence. OGCs recovered from small follicles (230-500 microm) required longer (P<0.05) than larger follicles to form the antrum structure. The percentage of OGCs forming the antrum structure that were cultured in 2% PVP (31%) was higher (P<0.05) than for those cultured in other PVP concentrations (0-11%). The percentages of antrum-structure formation for OGCs cultured on Falcon 3002 (83% for 2% PVP and 60% for 4% PVP) were higher (P<0.05) than those cultured on Falcon 1007 (47% for 2% PVP and 9% for 4% PVP). Furthermore, all of the intact oocytes that were obtained from culture of OGCs and that formed an antrum were in the GV stage (n=28). When these immature oocytes were cultured for 44 h, the percentage of oocytes that reached the metaphase II stage (25%, n=68) was higher (P<0.0001) than that of oocytes matured without culture (0.7%, n=137). The results of the present study show that porcine OGCs obtained from preantral or early antral follicles acquire meiotic competence in vitro.  相似文献   

9.
Meiosis Resumption of Canine Oocytes Cultured in the Isolated Oviduct   总被引:2,自引:0,他引:2  
The aim of this study was to investigate the effects of culture in isolated oviducts relative to meiotic maturation, the time required to resume meiosis and the viability of the canine oocytes. For this purpose, cumulus–oocyte complexes and isthmus–ampullar tracts of the oviducts were collected from bitches undergoing ovariohysterectomies and destined to two experiments of culture. In experiment 1, the oocytes were cultured for 24 or 30 h: (1) in 100 μl drops under oil; (2) on the mucosal epithelium of the open oviducts; (3) in the ligated oviducts. In experiment 2, oocytes were cultured in the ligated oviduct for 24, 30 and 48 h. A group of control oocytes was not cultured (0 h). The results showed that within 30 h of culture, a higher proportion of oocytes (p < 0.001) resumed meiosis in the ligated oviduct (63.8%) than in drop (20.4%) or in the open oviduct (27.1%). Moreover, 24 and 30 h of culture assured higher proportions of meiosis resumption than 48 h (69.2 and 59.1% vs 35.8%, p < 0.005). Oocyte resumption of meiosis was mainly determined by oocytes at meiotic stages preceding metaphase I, while stages between metaphase I and II in the ligated oviduct ranged between 12.5 and 31.9%. The extension of the culture time up to 48 h in the oviduct increased oocyte degeneration significantly (59.3%, p < 0.0001) compared with 24 and 30 h (18.7 and 27.3%, respectively) and the oviductal epithelium showed nuclear picnosis and degeneration following culture. The present study suggests that the close physical interaction between the canine oocytes and the oviductal tract positively affects oocyte maturation, and meiosis is resumed within 30 h of culture. Moreover, the oocyte survival is better preserved within 30 h in the ligated oviduct compared with the conventional culture in drop or to the culture in the open oviduct, but the ligated oviduct does not assure viability of the oocytes up to 48 h of culture.  相似文献   

10.
It has been reported that phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB) pathway plays a crucial role in the meiotic resumption and progression to the metaphase II (MII) stage of oocytes. However, the role of this pathway in meiotic arrest at the MII stage (cytostatic activity) is not well understood. In this study the effect of a PI3K inhibitor, LY294002, on the MAPK and p34cdc2 kinase activities of matured porcine oocytes was examined. After maturation culture, both the MAPK and p34cdc2 kinase activities in the oocytes were gradually decreased in a time-dependent manner. Although 25 µmol/L LY294002 did not affect either the MAPK or p34cdc2 kinase activities, 50 µmol/L LY294002 suppressed the PKB phosphorylation and slightly decreased MAPK activity, but not the p34cdc2 kinase activity. Therefore the effect of 10 µmol/L Ca2+ ionophore which was reported as inducing a transient decrease of p34cdc2 kinase but not MAPK activities, was also examined in LY294002-treated oocytes. By additional treatment with LY294002 after Ca2+ ionophore, both the MAPK and p34cdc2 kinase activities were decreased in a time-dependent manner, concomitantly with improvement of pronuclear formation. Therefore, we concluded that PI3K is involved in the maintenance of MAPK activity in matured porcine oocytes.  相似文献   

11.
Inhibitors of cyclin‐dependent kinases, as roscovitine, have been used to prevent the spontaneous resumption of meiosis in vitro and to improve the oocyte developmental competence. In this study, the interference of oil overlay on the reversible arrest capacity of roscovitine in sheep oocytes as well as its effects on cumulus expansion was evaluated. For this, cumulus‐oocyte complexes (COCs) were cultured for 20 h in TCM 199 with 10% foetal bovine serum (Control) containing 75 μm roscovitine (Rosco). Subsequently, they were in vitro matured (IVM) for further 18 h in inhibitor‐free medium with LH and FSH. The culture was performed in Petri dishes under mineral oil (+) or in 96 well plates without oil overlay (?) at 38.5°C and 5% CO2. At 20 and 38 h, the cumulus expansion and nuclear maturation were evaluated under stereomicroscope and by Hoechst 33342 staining, respectively. No group presented cumulus expansion at 20 h. After additional culture with gonadotrophins, a significant rate of COCs from both Control groups (+/?) exhibited total expansion while in both Rosco groups (+/?) the partial expansion prevailed. Among the oocytes treated with roscovitine, 65.2% were kept at GV in the absence of oil overlay while 40.6% of them reached MII under oil cover (p < 0.05). This meiotic arrest was reversible, and proper meiosis progression also occurred in the Control groups (+/?). So, the culture system without oil overlay improved the meiotic inhibition promoted by roscovitine without affecting the cumulus expansion rate or the subsequent meiosis progression.  相似文献   

12.
为提高体外成熟卵母细胞的发育能力,本实验采用卵泡内存在的减数分裂抑制剂次黄嘌呤(Hypoxanthine,HX)在体外维持小鼠GV期卵母细胞减数分裂阻滞,探讨了次黄嘌呤对卵母细胞减数分裂抑制作用的时效性、可逆性以及对卵丘扩展和解除抑制后的发育能力的影响。结果表明(1)4mmol/LHX维持减数分裂阻滞的作用具有时效性,GV%在18h时显著下降。(2)HX处理时间短于24h时,解除抑制后再成熟时卵母细胞的成熟率不受影响,抑制24h再成熟14h时成熟率仍可达86%。(3)HX处理会抑制卵丘扩展,解除抑制后再成熟时卵丘扩展程度跟抑制时间长短有关。(4)HX处理6h后,卵母细胞的孤雌激活率上升(42%vs20%,P<0.05),但胚胎的发育能力下降。这证明HX维持小鼠卵母细胞减数分裂阻滞的作用具有时效性和可逆性的特点,为建立提高体外成熟卵母细胞的发育能力的培养体系打下了基础。  相似文献   

13.
The efficiency of bovine in vitro embryo production has remained low despite extensive effort to understand the effects of culture conditions, media composition and supplementation. As bovine oocytes resume meiosis spontaneously when cultured, it was hypothesized that preventing meiosis in vitro before in vitro maturation (IVM) and in vitro fertilization (IVF) would allow more oocytes to acquire developmental competence. This article reviews some of the factors involved in meiotic arrest as well as the effects of meiotic inhibition before IVM on bovine oocytes developmental competence following IVF. Follicular components and cAMP-elevating agents can delay or inhibit meiosis in various proportions of oocytes; however, few studies have examined their effects on development following IVM and IVF because they are not practical (follicular components) or have a transient effect on meiosis (cAMP-elevating agents). Protein synthesis or phosphorylation inhibition prevented meiosis in high percentages of oocytes; however, these non-specific inhibitions led to lower developmental competence compared with non-arrested oocytes. Maturation promoting factor (MPF) inhibition with specific inhibitors has been examined in several studies. Despite faster maturation following removal from inhibition and some structural damage to the oocytes, MPF inhibition generally led to blastocyst rates similar to control, non-arrested oocytes. Future work will involve evaluating the effects on arrested oocytes of molecules that can improve developmental competence in non-arrested oocytes. It is also anticipated that new IVM systems that take into consideration new knowledge of the mechanisms involved in the control of meiosis will be developed. Moreover, global gene expression analysis studies will also provide clues to the culture conditions required for optimal expression of developmental competence.  相似文献   

14.
The wings apart-like (Wapl) protein is required to hold sister chromatids together in mitotic heterochromatin in Drosophila melanogaster. It is localized on the synaptonemal complex (SC), a meiosis-specific structure connecting one pair of sister chromatids to the homologous pair in mouse pachytene spermatocytes. The human Wapl is a cohesin-binding protein that facilitates cohesin's timely release from chromosome arms during prophase. The objective of the present study was to determine the subcellular localization of the mouse Wapl on female meiotic chromosomes at pachynema. The pachytene oocytes were isolated from foetal ovaries at 18.5 dpc and double immunostained with anti-synaptonemal complex protein 2 (SYCP2) and anti-Wapl. In the pachytene oocytes examined, mouse Wapl was colocalized with SYCP2 on the SC. Our results further implicated that Wapl might play a crucial role in meiotic chromosome remodelling at early meiosis.  相似文献   

15.
Although mouse oocytes progressively acquire meiotic competence during their growth in the ovaries, only half of full-grown oocytes can accomplish meiosis. Two types of full-grown oocytes have been reported on the basis of their chromatin configuration, the surrounded-nucleolus (SN) type and the non-surrounded-nucleolus (NSN) type. Therefore, full-grown oocytes collected from the ovaries of adult animals comprise a heterogeneous population; some oocytes are meiotically incompetent (NSN-type), and some are competent (SN-type). In the present study, we found that full-grown oocytes could be classified into two groups using the criterion of formation of the perivitelline space (PVS) after culture with 3-isobutyl-1-methylxanthine (IBMX) for 1 h. In oocytes with a PVS, actin-filled processes within zona pellucidae originating from cumulus cells were reduced, while they were rich in oocytes without a PVS, suggesting that a reduction in these processes contributes to PVS formation. PVS formation was highly correlated with meiotic competence and SN-type configuration. The results of this study demonstrate that PVS formation is a useful criterion for easily distinguishing between SN- and NSN-type oocytes, without injury to the cells.  相似文献   

16.
We investigated the frequencies of cytoskeletal anomalies in metaphase-II (M-II) and incompetent [arrested at an immature metaphase (IM) stage] porcine and bovine oocytes during in vitro maturation (IVM) in relation with ageing by immunostaining and confocal microscopy. In porcine oocytes, meiotic arrest at the IM stage was associated with abnormalities of cortical actin but not with abnormal spindles. Prolongation of IVM culture to 52 h did not affect microfilament and spindle abnormalities, but reduced the microfilament-rich area overlaying the spindle. Meiotic arrest of bovine oocytes at the IM stage was associated with degenerations of microfilaments, and the frequencies of abnormal spindles were also higher than those of M-II oocytes. Ageing of bovine oocytes (IVM for 30 h) did not affect cortical microfilaments but increased the frequency of spindle alterations in both M-II and IM bovine oocytes. These results suggest that, in both species, altered ability of oocytes to polymerize F-actin might be a possible reason for the failure of polar body extrusion during IVM. Also, there seem to be differences between the two species in the sensitivity of oocytes to suffer ageing-related spindle damages.  相似文献   

17.
Incomplete cytoplasmic maturation of in vitro matured (IVM) oocytes has been known to cause microtubule and microfilament alterations, which may result in abnormal pronuclear formation and failed embryonic development. We examined the influences of maturation conditions on meiotic spindle morphology at metaphase of meiosis II (MII) in porcine oocytes. Porcine oocytes were matured under various conditions, i.e., in vitro or in vivo, with different amounts of cumulus cells, with or without hormonal supplements, and with various exposure durations to the hormones, to examine the effects on spindle morphology in MII oocytes by immunofluorescence under confocal laser microscopy. Interpolar spindle length (microm) and spindle area (microm2) were compared among these maturation conditions. The spindle length was significantly shorter in IVM oocytes compared to those matured in vivo. Oocytes collected from cumulus oocyte complexes (COCs), which were poor in cumulus cells, showed smaller spindle areas than those from cumulus-rich COCs. The spindle length and area were both significantly reduced in oocytes grown without hormonal supplements. When oocytes were grown with hormonal supplements for either 6 or 22 hours for the first half of culture, there was no difference in the spindle morphology between these oocytes. These results suggested that maturation conditions significantly influence morphogenesis of MII spindles in porcine oocytes. Oocytes matured in poor conditions were more likely to have a shorter spindle length (long axis) and smaller spindle areas.  相似文献   

18.
The objectives of the present study were to investigate the relationship between the morphological status of cumulus cells surrounding canine oocytes after maturation culture and the meiotic stage of the oocytes. In addition, the effect of the removal of cumulus cells from canine cumulus-oocyte complexes (COCs) during maturation culture on their meiotic competence was examined. Canine COCs were collected from bitches at the anoestrous and dioestrous stages and only COCs with >110 microm in vitelline diameter were cultured in medium 199 with 10% canine serum for 72 h. In the first experiment, the relation between the morphological status of cumulus cells surrounding oocytes cultured for 72 h and their meiotic stages was examined. At the end of maturation culture, the proportions of intact, partially nude and completely nude oocytes were 65.2%, 22.9% and 11.9%, respectively. The proportion of maturation to metaphase II of completely nude oocytes was highest among the oocytes with different morphological status of cumulus cells. In the second experiment, the cumulus cells were partially or completely removed from COCs at 48 h after the start of maturation culture and the oocytes were cultured for a further 24 h. The proportion of oocytes reaching metaphase II in the completely denuded oocytes was significantly higher than that in the control oocytes without the removal treatment of cumulus cells. The results indicate that morphological status of cumulus cells surrounding oocytes may be related to the nuclear maturation of canine oocytes, and the removal of cumulus cells from COCs during maturation culture can promote the completion of oocyte meiotic maturation.  相似文献   

19.
To improve culture system for in vitro maturation (IVM) of porcine oocytes, ghrelin, leptin or growth hormone (GH), at concentration of 0, 0.5, 5, 50 and 500 ng/ml were added to the porcine follicular fluid (pFF)‐supplemented medium NCSU23, and their effects on the maturation and cytoskeletal distribution of the oocytes with or without cumulus cells were compared. In the cumulus‐denuded oocytes, no significant changes were noted in the maturation rate by different hormone treatments due to a marked decline in the controls. Maturation of the cumulus intact oocytes was moderately interfered by ghrelin (0.5–50 ng/ml, p < 0.01), but not significantly affected by leptin and GH. Distribution density of the cytoplasmic microtubules was decreased significantly by addition of ghrelin (by approximately 30% in 50–500 ng/ml, p < 0.01), whereas no remarkable effect was noted by leptin supplementation. High concentration (500 ng/ml) of ghrelin or leptin decreased significantly the cytoplasmic microfilaments in density (by 43% and 38%, p < 0.01, respectively). GH did not affect cytoskeletal distribution. The results suggest, in the culture system using pFF‐supplemented medium that (i) ghrelin may have some inhibitory effect on the organization of microtubules and microfilaments, probably being a factor in lowered maturation rate and (ii) the addition of higher concentration of leptin may decrease microfilaments in density with no effect on meiotic maturation of the porcine oocytes.  相似文献   

20.
Growing porcine oocytes from early antral follicles can acquire meiotic and developmental competence under suitable culture conditions, but at lower rates compared to full‐grown oocytes. We postulated that estradiol‐17β (E2) supported the acquisition of meiotic and developmental competence as well as cumulus‐expansion ability during growth culture. Growing oocytes from early antral follicles (1.2 to 1.5 mm in diameter) were grown in vitro for 5 days in a medium containing 0, 10?7, 10?6, 10?5 or 10?4 mol/L E2; after in vitro maturation, 35, 58, 47, 74 and 49% of oocytes matured to metaphase II, 25, 79, 77, 90 and 97% acquired cumulus‐expansion ability, and 23, 54, 63, 89 and 64% were fully surrounded by cumulus cells, respectively. Following maturation, electro‐stimulation was applied to the oocytes grown with 10?5 mol/L E2. After 6 days of culture, in vitro‐grown oocytes developed to the blastocyst stage at a rate similar to that for full‐grown oocytes (31% and 40%, respectively). Therefore, we suggest that the use of E2 during growth culture improves the meiotic and developmental competence of oocytes, cumulus‐expansion ability, and cumulus cell attachment to the oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号