首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In August 2007, an outbreak of equine influenza occurred among vaccinated racehorses with Japanese commercial equine influenza vaccine at Kanazawa Racecourse in Ishikawa prefecture in Japan. Apparent symptoms were pyrexia (38.2-41.0 degrees C) and nasal discharge with or without coughing, although approximately half of the infected horses were subclinical. All horses had been shot with a vaccine that contained two inactivated H3N8 influenza virus strains [A/equine/La Plata/93 (La Plata/93) of American lineage and A/equine/Avesta/93 (Avesta/93) of European lineage] and an H7N7 strain (A/equine/Newmarket/1/77). Influenza virus, A/equine/Kanazawa/1/2007 (H3N8) (Kanazawa/07), was isolated from one of the nasal swab samples of diseased horses. Phylogenetic analysis indicated that Kanazawa/07 was classified into the American sublineage Florida. In addition, four amino acid substitutions were found in the antigenic sites B and E in the HA1 subunit protein of Kanazawa/07 in comparison with that of La Plata/93. Hemagglutination-inhibition (HI) test using 16 serum samples from recovering horses revealed that 1.4- to 8-fold difference in titers between Kanazawa/07 and either of the vaccine strains. The present findings suggest that Japanese commercial inactivated vaccine contributed to reducing the morbidity rate and manifestation of the clinical signs of horses infected with Kanazawa/07 that may be antigenically different from the vaccine strains.  相似文献   

2.
Estimation formulas for the morbidity of horses infected with equine influenza virus by linear regression, logistic regression and probit transformation were developed, using data from the outbreak at the Sha Tin Racing Track in Hong Kong in 1992. Using these formulas, we estimated the equine influenza virus morbidity rates at training centers belonging to the Japan Racing Association (JRA) in October 1997 and in October 1998. In 1998 JRA started a new vaccination program, and every horse must now be vaccinated twice per year. At that time, the vaccine included two US lineage virus strains, the A/equine/Kentucky/81 strain and the A/equine/La Plata/93 (LP93) strain, against equine type-2 influenza viruses; it did not include any EU lineage virus strains, such as A/equine/Suffolk/89 (SF89). Comparing the geometric mean (GM) values of hemagglutination inhibition (HI) titers between the LP93 strain and the SF89 strain in 1997 and in 1998, they both rose significantly at every age (p<0.05) by Wilcoxon test. Calculations by the simulation models show the morbidity rates for LP93 diminished from 0.439 (linear), 0.423 (logistic) and 0.431 (probit) to 0.276 (linear), 0.265 (logistic) and 0.271 (probit), respectively. On the other hand, the estimated morbidity rates for SF89 diminished only slightly from 0.954 (linear), 0.932 (logistic) and 0.944 (probit) to 0.946 (linear), 0.914 (logistic) and 0.927 (probit), respectively. Our simulation models could estimate the effect of the vaccine on each of the equine virus strains represented by the morbidity of infected horses. Thus, they are useful for vaccine evaluation.  相似文献   

3.
Antigenic variation among equine H 3 N 8 influenza virus hemagglutinins   总被引:1,自引:0,他引:1  
To provide information on the antigenic variation of the hemagglutinins (HA) among equine H 3 influenza viruses, 26 strains isolated from horses in different areas in the world during the 1963-1996 period were analyzed using a panel of monoclonal antibodies recognizing at least 7 distinct epitopes on the H 3 HA molecule of the prototype strain A/equine/Miami/1/63 (H 3 N 8). The reactivity patterns of the virus strains with the panel indicate that antigenic drift of the HA has occurred with the year of isolation, but less extensively than that of human H 3 N 2 influenza virus isolates, and different antigenic variants co-circulate. To assess immunogenicity of the viruses, antisera from mice vaccinated with each of the 7 representative inactivated viruses were examined by neutralization and hemagglutination-inhibition tests. These results emphasize the importance of monitoring the antigenic drift in equine influenza virus strains and to introduce current isolates into vaccine. On the basis of the present results, equine influenza vaccine strain A/equine/Tokyo/2/71 (H 3 N 8) was replaced with A/equine/La Plata/1/93 (H 3 N 8) in 1996 in Japan. The present results of the antigenic analysis of the 26 strains supported the results of a phylogenetic analysis, that viruses belonging to each of the Eurasian and American equine influenza lineages have independently evolved. However, the current vaccine in Japan consists of two American H 3 N 8 strains; A/equine/Kentucky/1/81 and A/equine/La Plata/1/93. It is also therefore recommended that a representative Eurasian strain should be included as a replacement of A/equine/Kentucky/1/81.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Surveillance of equine influenza viruses has suggested that strains included in currently licensed vaccines are a poor match for those predominantly circulating in the field. OBJECTIVE: To assess the ability of Duvaxyn IE-T Plus to provide cross protection against the newly evolved South Africa/4/03 (H3N8) strain of equine influenza virus. METHODS: The vaccine efficacy was evaluated by challenge infection with influenza strain A/eq/South Africa/4/03 (H3N8) 2 weeks after a primary course of 2 vaccinations with Duvaxyn IE-T Plus given at a 4-week interval. The outcome of challenge in vaccinated ponies was compared with that in unvaccinated animals. RESULTS: At the time of challenge, all vaccinated ponies had high levels of antibody to Newmarket/1/93, Newmarket/2/93 and South Africa/4/03 strains measured by single radial haemolysis. After challenge infection, there were statistically significantly decreased clinical scores and virus shedding was significantly lower in the vaccinated ponies compared to unvaccinated controls. CONCLUSION: Two doses of Duvaxyn IE-T Plus provides good clinical and virological protection against challenge with a variant virus 2 weeks after the 2 doses of vaccine. POTENTIAL RELEVANCE: When variant strains of equine influenza virus first emerge, booster immunisations with currently available vaccines may limit infection provided sufficiently high antibody levels are achieved, suggesting that vaccination in the face of an outbreak may be beneficial.  相似文献   

5.
Antibodies to the nonstructural protein (NS1) of A/equine/Miami/1/63 (H3N8) influenza virus were detected exclusively in the sera of mice experimentally infected with A/Aichi/2/68 (H3N2) and horses infected with A/equine/Kentucky/1/81 (H3N8) or A/equine/La Plata/1/93 (H3N8), but not in those of the animals immunized with the inactivated viruses, by enzyme-linked immunosorbent assay (ELISA) using a recombinant NS1 as antigen. The results indicate that the present method is useful for serological diagnosis to distinguish horses infected with equine H3 influenza viruses from those immunized with the inactivated vaccine.  相似文献   

6.
An inactivated equine influenza virus (EIV) vaccine and a live equine herpesvirus type 1 (EHV-1) vaccine are usually administered concurrently to Thoroughbred racehorses in Japan. The objective of this study was to evaluate whether concurrent administration of an inactivated EIV vaccine and a live EHV-1 vaccine in Thoroughbred racehorses influences the antibody response against EIV. We compared the antibody response against EIV in horses administered both vaccines on the same day (Group A; n = 27) and the response in horses administered an inactivated EIV vaccine first and then a live EHV-1 vaccine 1–2 weeks later (Group B; n = 20). In both groups, geometric mean hemagglutination inhibition (HI) titers against A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010 increased significantly after EIV vaccination. However, the percentage of horses that showed a twofold increase or greater in HI titers against A/equine/Yokohama/aq13/2010 was significantly higher in Group B (75%) than in Group A (37%; P = .02). These results suggest that the concurrent use of an inactivated EIV vaccine and a live EHV-1 vaccine reduced the immune response against EIV to some extent, and it would be better to use these vaccines consecutively, especially for naïve horses or horses whose vaccination history is incomplete.  相似文献   

7.
It has been recommended that modern equine influenza vaccines should contain an A/equi-1 strain and A/equi-2 strains of the American and European-like subtype. We describe here the efficacy of a modern updated inactivated equine influenza-herpesvirus combination vaccine against challenge with a recent American-like isolate of equine influenza (A/equine-2/Kentucky/95 (H3N8). The vaccine contains inactivated Influenza strains A-equine-1/Prague'56, A-equine-2/Newmarket-1/'93 (American lineage) and A-equine-2/ Newmarket-2/93 (Eurasian lineage) and inactivated EHV-1 strain RacH and EHV-4 strain V2252. It is adjuvanted with alhydrogel and an immunostim. Horses were vaccinated at the start of the study and 4 weeks later. Four, six and eight weeks after the first vaccination high anti-influenza antibody titres were found in vaccinated horses, whereas at the start of the study all horses were seronegative. After the challenge, carried out at 8 weeks after the first vaccination, nasal swabs were taken, rectal temperatures were measured and clinical signs were monitored for 14 days. In contrast to unvaccinated control horses, vaccinated animals shed hardly any virus after challenge, and the appearance of clinical signs of influenza such as nasal discharge, coughing and fever were reduced in the vaccinated animals. Based on these observations, it was concluded that the vaccine protected against clinical signs of influenza and, more importantly, against virus excretion induced by an American-like challenge virus strain. In a second experiment the duration of the immunity induced by this vaccine was assessed serologically. Horses were vaccinated at the start of the study and 6 and 32 weeks later. Anti-influenza antibody titres were determined in bloodsamples taken at the first vaccination, and 2, 6, 8, 14, 19, 28, 32, 37, 41, 45 and 58 weeks after the first vaccination. Vaccinated horses had high anti-influenza antibody titres, above the level for clinical protection against influenza, against all strains present in the vaccine until 26 weeks after the third vaccination.  相似文献   

8.
Like other influenza A viruses, equine influenza virus undergoes antigenic drift. It is therefore essential that surveillance is carried out to ensure that recommended strains for inclusion in vaccines are kept up to date. Here we report antigenic and genetic characterisation carried out on equine influenza virus strains isolated in North America and Europe over a 2-year period from 2008 to 2009. Nasopharyngeal swabs were taken from equines showing acute clinical signs and submitted to diagnostic laboratories for testing and virus isolation in eggs. The sequence of the HA1 portion of the viral haemagglutinin was determined for each strain. Where possible, sequence was determined directly from swab material as well as from virus isolated in eggs. In Europe, 20 viruses were isolated from 15 sporadic outbreaks and 5 viruses were isolated from North America. All of the European and North American viruses were characterised as members of the Florida sublineage, with similarity to A/eq/Lincolnshire/1/07 (clade 1) or A/eq/Richmond/1/07 (clade 2). Antigenic characterisation by haemagglutination inhibition assay indicated that the two clades could be readily distinguished and there were also at least seven amino acid differences between them. The selection of vaccine strains for 2010 by the expert surveillance panel have taken these differences into account and it is now recommended that representatives of both Florida clade 1 and clade 2 are included in vaccines.  相似文献   

9.
Dai Y  Liu M  Li W 《Avian diseases》2008,52(3):467-471
Since 1997, severe outbreaks of Newcastle disease (ND) in geese in many regions throughout China have resulted in high morbidity and mortality, and great economic loss to farmers; however, no licensed, specific vaccine is yet available for this disease in China. In this study, goslings were immunized with different combinations and dosages of several commercial ND vaccines including La Sota vaccine, Mukteswar vaccine, recombinant live vaccine against avian influenza (AI) and ND (rL-H5 strain), and inactivated ND oil-emulsion vaccine (La Sota strain). The protective effects were evaluated based upon the level of antibody response and the degree of protection against the goose-origin virulent NDV strain. The result showed that two doses (i.e., one more than that for chicken) of La Sota vaccine priming, followed by 2-5 doses of Mukteswar vaccine boosting 2-3 weeks later, not only induced higher HI antibody levels, but also conferred longer-lasting protection. This immunization procedure can be recommended for prevention of ND in geese.  相似文献   

10.
To investigate the level of cross-protection induced by equine influenza H3N8 vaccines derived from different lineages, two studies have been carried out with ponies vaccinated with 'American-like' and 'European-like' vaccines and experimentally challenged with a European-like strain. The results demonstrated that equine influenza vaccines clearly protect against challenge with homologous virus if serum antibody titres are sufficiently high. On the other hand, protection is incomplete even when animals vaccinated with heterologous strains have comparative antibody levels. Nevertheless, the protection afforded by heterologous viruses can be improved by stimulating high levels of antibody. It would be advisable to update equine influenza vaccine strains regularly so that they contain similar strains to variants that are circulating in the field.  相似文献   

11.
A novel strain of equine influenza virus, influenza A/equine/Jilin (China)/1/89, has emerged which is genetically distinct from all earlier strains of equine influenza. It is therefore possible that the vaccines against equine influenza may be unable to protect horses against disease caused by this virus strain. In vitro serological assays established that there were low levels of immunological cross-reactivity between the new virus, the current vaccine strains and the strains of equine-2 influenza virus now in circulation.  相似文献   

12.
In April 2004 an outbreak of equine influenza occurred at the Zagreb hippodrome, Croatia. Clinical respiratory disease of the same intensity was recorded in vaccinated and non-vaccinated horses. The equine influenza vaccine used in Croatia at the time of the outbreak contained the strains A/equine/Miami/63 (H3N8), A/equine/Fontainebleau/79 (H3N8) and A/equine/Prague/56 (H7N7). At the same time, the usual strains in vaccines used in Europe were, in accordance with the recommendation of the World Organisation for Animal Health (OIE) Expert Surveillance Panel on equine influenza, A/equine/Newmarket/1/93 (H3N8) and A/equine/Newmarket/2/93 (H3N8). At the same time, some current vaccines in the USA contained A/equine/Kentucky/97 (H3N8). Genetic characterization of the HA1 portion of the haemagglutinin (HA) gene of virus isolated from the outbreak indicated that the isolate (A/equine/Zagreb/04) was an H3N8 strain closely related to recent representative viruses of the American lineage Florida sub-lineage. In comparison with both H3N8 vaccine strains used in horses at the Zagreb hippodrome, A/equine/Zagreb/04 displayed amino acids changes localised to 4 of the 5 described antigenic sites (A-D) of subunit protein HA1. Comparison of the amino acid sequence of the HA1 subunit protein of the outbreak strain with that of A/equine/Newmarket/1/93 displayed three amino acids changes localised in antigenic sites B and C, while antigenic sites A, D and E were unchanged. The Zagreb 2004 outbreak strain had the same amino acids at antigenic sites of the HA1 subunit protein as the strain A/equine/Kentucky/97. Amino acid changes in antigenic sites between HA1 subunit of the outbreak strain and the strains used in the vaccines likely accounted for the vaccine failure and the same clinical signs in vaccinated and unvaccinated horses. Use of a recent strain in vaccines should limit future outbreaks.  相似文献   

13.
In the horse, conventional inactivated or subunit vaccines against equine influenza virus (EIV) induce a short-lived antibody-based immunity to infection. Alternative strategies of vaccination have been subsequently developed to mimic the long-term protection induced by natural infection with the virus. One of these approaches is the use of immune-stimulating complex (ISCOM)-based vaccines. ISCOM vaccines induce a strong antibody response and protection against influenza in horses, humans, and a mouse model. Cell-mediated immunity (CMI) has been demonstrated in humans and mice after ISCOM vaccination, but rarely investigated in the horse. The aim of this study was to evaluate EIV-specific immune responses after intra-muscular vaccination with an ISCOM-EIV vaccine (EQUIP F) containing both equine influenza H7N7 (A/eq/Newmarket/77) and H3N8 (A/eq/Borl?nge/91 and A/eq/Kentucky/98) strains. The antibody response was measured by single radial haemolysis (SRH) assay using different H3N8 EIV strains. Stimulation of type-1 immunity was evaluated with a recently developed method that measures EIV-specific IFNgamma synthesis by peripheral blood lymphocytes (PBL). The protective efficacy of this ISCOM-based vaccine against challenge infection with a recent equine influenza (H3N8; A/eq/South Africa/4/03) strain was also evaluated. Vaccinated ponies developed elevated levels of EIV-specific SRH antibody and increased percentage of EIV-specific IFNgamma(+) PBL, whereas these responses were only detected after challenge infection in unvaccinated control ponies. Vaccinates showed minimal signs of disease and did not shed virus when challenged shortly after the second immunisation. In conclusion, evidence of type-1 immunity induced by an ISCOM-based vaccine is described for the first time in horses.  相似文献   

14.
为建立一种快速、有效的检测马流感病毒(Equine influenza virus,EIV)的方法,以EIV中国分离株A/马/新疆/07(H3N8)制备的多克隆抗体为捕获抗体,原核表达的核蛋白(NP)制备的单克隆抗体为检测抗体,在国内首次建立了检测EIV的双抗体夹心ELISA方法.用该检测方法分别检测EIV、马动脉炎病毒、马疱疹病毒1型、马疱疹病毒4型和马乙型脑炎病毒阳性样品.结果表明,该ELISA方法具有良好的特异性;与常规检测EIV的血凝试验相比,其敏感性是后者的2.5~10倍;同时与H7N7亚型EIV有交叉反应.攻毒试验结果表明该方法可有效检测鼻腔分泌物中的EIV.该方法的建立为EIV的检测及早期防控提供了有效工具.  相似文献   

15.
选择国家指定的两个厂家生产的禽流感灭活疫苗(H5亚型,N28株)进行无母源抗体来航鸡的免疫试验.通过鸡免疫后血凝抑制(HI)抗体的动态性检测,对两个疫苗的免疫效果进行了观察.研究结果表明,两个疫苗均具有良好的免疫效果,但也存在一定程度的差异;加强免疫可以明显提高抗体水平,延长免疫保护时间.  相似文献   

16.
Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.  相似文献   

17.
During 2007, large outbreaks of equine influenza (EI) caused by Florida sublineage Clade 1 viruses affected horse populations in Japan and Australia. The likely protection that would be provided by two modern vaccines commercially available in the European Union (an ISCOM-based and a canarypox-based vaccine) at the time of the outbreaks was determined. Vaccinated ponies were challenged with a representative outbreak isolate (A/eq/Sydney/2888-8/07) and levels of protection were compared. A group of ponies infected 18 months previously with a phylogenetically-related isolate from 2003 (A/eq/South Africa/4/03) was also challenged with the 2007 outbreak virus. After experimental infection with A/eq/Sydney/2888-8/07, unvaccinated control ponies all showed clinical signs of infection together with virus shedding. Protection achieved by both vaccination or long-term immunity induced by previous exposure to equine influenza virus (EIV) was characterised by minor signs of disease and reduced virus shedding when compared with unvaccinated control ponies. The three different methods of virus titration in embryonated hens’ eggs, EIV NP-ELISA and quantitative RT-PCR were used to monitor EIV shedding and results were compared. Though the majority of previously infected ponies had low antibody levels at the time of challenge, they demonstrated good clinical protection and limited virus shedding. In summary, we demonstrate that vaccination with current EIV vaccines would partially protect against infection with A/eq/Sydney/2888-8/07-like strains and would help to limit the spread of disease in our vaccinated horse population.  相似文献   

18.
A monoclonal antibody, AVS-I, was produced from a hybridization of murine myeloma cells and splenocytes from mice immunized with the La Sota strain of Newcastle disease virus (NDV). The hybridoma producing AVS-I, selected from 184 NDV-positive supernatants, is one of two supernatants that reacted exclusively with lentogenic strains in an indirect enzyme-linked immunosorbent assay. AVS-I can also be assayed by hemagglutination-inhibition (HI), which was used to test selected reference avian paramyxovirus (PMV) strains of types 1 to 3. NDV vaccines La Sota and B1 and field isolates from chickens, turkeys, pigeons, and cockatoos were also used as antigens. AVS-I had a high binding affinity for all La Sota and B1 strains, including vaccines. The antibody bound with a lower titer to the Australian Queensland V4 and Ulster strains, but it did not bind to the F strain, a lentogenic strain from England. AVS-I was HI-negative against the other PMV reference strains. AVS-I may be valuable for identifying field isolates antigenically similar to La Sota and B1 and rapidly differentiate those vaccine strains from more virulent viruses.  相似文献   

19.
In this study, antibody responses after equine influenza vaccination were investigated among 1,098 horses in Korea using the hemagglutination inhibition (HI) assay. The equine influenza viruses, A/equine/South Africa/4/03 (H3N8) and A/equine/Wildeshausen/1/08 (H3N8), were used as antigens in the HI assay. The mean seropositive rates were 91.7% (geometric mean antibody levels (GMT), 56.8) and 93.6% (GMT, 105.2) for A/equine/South Africa/4/03 and A/equine/Wildeshausen/1/08, respectively. Yearlings and two-year-olds in training exhibited lower positive rates (68.1% (GMT, 14) and 61.7% (GMT, 11.9), respectively, with different antigens) than average. Horses two years old or younger may require more attention in vaccination against equine influenza according to the vaccination regime, because they could be a target of the equine influenza virus.  相似文献   

20.

The efficacy of vaccination with Newcastle disease (ND) La Sota and R2B (Mukteswar) modified live strain vaccines was determined by experimental challenge and with ND La Sota vaccine under field conditions in Nepal. Booster vaccination with ND La Sota vaccine after a primary vaccination with ND La Sota vaccine, induced a geometric mean titre (GMT) of 5.0 log2 haemagglutination inhibition (HI) units, compared to a GMT of 6.0 log2 HI units following booster vaccination with R2B vaccine 1 month after primary vaccination with ND La Sota vaccine. Both vaccines provided 100% protection against challenge with a local field ND strain. Furthermore, booster vaccination with ND La Sota vaccine induced protective levels of antibody after field use in villages in Jhapa, and no outbreaks of ND occurred during the study period. The ND La Sota modified live vaccine is immunogenic and efficacious and is a suitable vaccine for use in vaccination programmes in village chickens in the rural areas of Nepal.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号