首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 degrees C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 degrees C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55-57 degrees C) and a biphasic model for higher temperatures (58-70 degrees C). The enzyme showed a stable behavior toward high-pressure/temperature treatments.  相似文献   

2.
Low-temperature blanching of vegetables activates the enzyme pectin methylesterase (PME), which demethylates cell wall pectins and improves tissue firmness. This temperature activation of PME has been investigated by measuring the formation of methanol in intact tissue of green beans and tomatoes. Rates of methanol formation at temperatures of 35-65 degrees C were obtained by measuring the release of methanol from thin slices of tomato pericarp or green bean pod material. Activation energies of 112 and 97 kJ mol(-1) were calculated for PME activity in green beans and tomatoes, respectively. These activation energies indicate that the rate of pectin demethylation at 65 degrees C will be nearly 100 times that at 25 degrees C. PME activity was also determined titrimetrically using a solubilized form of the enzyme and purified pectin at temperatures from 30 to 60 degrees C. Under these conditions, much lower activation energies of 37 and 35 kJ mol(-1) were obtained for green beans and tomatoes, respectively. Methanol accumulation during heating of whole intact green beans was also determined and yielded an activation energy similar to that obtained with sliced beans. Whole green beans held at room temperature did not accumulate any methanol, but sliced or homogenized beans did. If whole beans were first heated to 45 degrees C and then cooled, methanol accumulation was observed at room temperature. These results indicate that two factors contribute to the observed high rate of pectin de-esterification during low-temperature blanching: (1) An irreversible change, causing PME to become active, occurs by heating to > or = 45 degrees C. (2) The high activation energy for pectin de-esterification means that the rate of de-esterification increases substantially with increasing temperature.  相似文献   

3.
A specific indicator of freshness, allowing routine distinction between freshly squeezed orange juices (FSOJs) and FSOJ-like products, was to be identified. Using the Actijoule unit of a tubular heater at a flow rate of 60 L/h, FSOJs from Citrus sinensis (L.) Osbeck cv. Valencia Late were continuously heated on a pilot plant scale at six different temperatures (42-92 degrees C), followed by continuous cooling to ambient temperature and subsequent filling into sterilized glass jars. The cloud stability and residual activities of pectin methylesterase (PE) and peroxidase (POD) were monitored over the storage at 4 degrees C for up to 62 days, thus considering the storage conditions of FSOJs in retail markets. As shown by the viable microbial counts throughout storage, microbial activity was insignificant due to good sanitary practice, thus proving that the enzyme activities detected were of plant origin. The juices processed at temperatures > or =62 degrees C were characterized by minor residual activities. When exposed to temperatures <62 degrees C in the genuine acidic matrix of the juices, the heat stability of PE exceeded that of POD. Compared with the aforementioned samples, the juice processed at 52 degrees C with a residual PE activity of 33.8% was hardly inferior in terms of cloud stability within the first 14 days. After the juice was processed at 42 degrees C, rapid clarification occurred within the first 8 days, consistent with undetectable PE deactivation. Hence, only the range of approximately 50-60 degrees C is relevant in minimal heat-processing for the retention of cloud stability within the short turnover period of FSOJ-like products, with partial PE and POD deactivation being already sufficient to distinguish those juices from FSOJs. Irrespective of the previous thermal treatment, the total PE activity remained nearly constant during storage, whereas the POD activity rapidly declined to minor levels after 20 days. Consequently, as to the future analysis of samples with unknown processing history, PE was suggested as an indicator enzyme for the freshness of FSOJs, allowing their unambiguous distinction from minimally heat-processed juices.  相似文献   

4.
Inhibitors of 15-lipoxygenase from orange peel   总被引:5,自引:0,他引:5  
A series of polymethoxylated flavonoids has been isolated from orange peel, and their inhibitory activity toward soybean 15-lipoxygenase was determined. The strongest inhibition was shown by 3,5,6,7,3',4'-hexamethoxyflavone (IC(50) = 49 +/- 5 microM). Sinensetin, nobiletin, tangeretin, tetramethylscutellarein, and 3,5, 6,7,8,3',4'-heptamethoxyflavone were somewhat less active, with IC(50) values of 70-86 microM, comparable to the positive control quercetin (IC(50) = 68 +/- 5 microM). Demethylation apparently results in less active compounds, with 5-O-demethylsinensetin having an IC(50) value of 144 +/- 10 microM. Some other orange peel constituents were isolated and tested as well, hesperidin (IC(50) = 180 +/- 10 microM) and ferulic acid (111 +/- 2 microM), showing moderate activity. The polymethoxylated flavonoids were virtually inactive as scavengers of the diphenylpicrylhydrazyl radical. Hesperidin was only slightly active (24.2 +/- 0.7% scavenged at a concentration of 2 mM), and ferulic acid showed good activity (IC(50) = 86.4 +/- 0.7 microM). From this, it appears that orange peel constituents may counteract enzymatic lipid peroxidation processes catalyzed by 15-lipoxygenase in vitro. The radical scavenging activity of orange peel extracts is only modest.  相似文献   

5.
微波加热法提取柚果皮果胶的工艺(简报)   总被引:5,自引:2,他引:5  
对新鲜柚果皮中果胶进行微波提取,采用咔唑比色法测定提取液中的果胶含量.探讨了料液比、微波功率、微波处理时间、盐析条件等对果胶得率和半乳糖醛酸含量的影响,运用L9(34)正变试验对微波加热提取果胶的工艺条件进行了优化.结果表明:微波功率对果胶得率有极显著影响,微波处理时间影响较小.较佳工艺是:液料比(V/m)8:1,调pH值为2.0,微波功率640W,处理时间8 min,盐析饱和硫酸铝用量与酸萃取液比例为3:5,此条件下提取柚皮果胶得率为4.457%,果胶的半乳糖醛酸含量为42.58%.  相似文献   

6.
A pectin methylesterase (PME) from sweet orange fruit rag tissue, which does not destabilize citrus juice cloud, has been characterized. It is a salt-dependent PME (type II) and exhibits optimal activity between 0.1 and 0.2 M NaCl at pH 7.5. The pH optimum shifted to a more alkaline range as the salt molarity decreased (pH 8.5-9.5 at 50 mM NaCl). It has an apparent molecular mass of 32.4 kDa as determined by gel filtration chromatography, an apparent molecular mass of 33.5 kDa as determined by denaturing electrophoresis, and a pI of 10.1 and exhibits a single activity band after isoelectric focusing (IEF). It has a K(m) of 0.0487 mg/mL and a V(max) of 4.2378 nkat/mg of protein on 59% DE citrus pectin. Deblocking the N-terminus revealed a partial peptide composed of SVTPNV. De-esterification of non-calcium-sensitive pectin by 6.5% increased the calcium-sensitive pectin ratio (CSPR) from 0.045 +/- 0.011 to 0.829 +/- 0.033 but had little, if any, effect on pectin molecular weight. These properties indicate this enzyme will be useful for studying the PME mode of action as it relates to juice cloud destabilization.  相似文献   

7.
The enzyme pectin methylesterase (PME) is present in acerola fruit and was partially purified by gel filtration on Sephadex G-100. The results of gel filtration showed different PME isoforms. The total PME (precipitated by 70% salt saturation) and one of these isoforms (fraction from Sephadex G-100 elution) that showed a molecular mass of 15.5 +/- 1.0 kDa were studied. The optimum pH values of both forms were 9.0. The total and the partially purified PME showed that PME specific activity increases with temperature. The total acerola PME retained 13.5% of its specific activity after 90 min of incubation at 98 degrees C. The partially purified acerola (PME isoform) showed 125.5% of its specific activity after 90 min of incubation at 98 degrees C. The K(m) values of the total PME and the partially purified PME isoform were 0.081 and 0.12 mg/mL, respectively. The V(max) values of the total PME and the partially purified PME were 2.92 and 6.21 micromol/min/mL/mg of protein, respectively.  相似文献   

8.
Pectin methylesterase (PME) was extracted from bananas and purified by affinity chromatography. The thermal-high-pressure inactivation (at moderate temperature, 30-76 degrees C, in combination with high pressure, 0.1-900 MPa) of PME was investigated in a model system at pH 7.0. Under these conditions, the stable fraction was not inactivated and isobaric-isothermal inactivation followed a fractional-conversion model. At lower pressure (< or =300-400 MPa) and higher temperature (> or =64 degrees C), an antagonistic effect of pressure and heat was observed. Third-degree polynomial models (derived from the thermodynamic model) were successfully used to describe the heat-pressure dependence of the inactivation rate constants.  相似文献   

9.
Pectin methylesterase (PME) is the key enzyme responsible for the gelation of jelly curd in the water extract of jelly fig (Ficus awkeotasang) achenes. The jelly fig PME extracted from achenes was isoelectrofocused at pH 2.5 and subjected to N-terminal amino acid sequencing. A cDNA fragment encoding the mature protein of this acidic PME was obtained by PCR cloning using a poly(T) primer and a degenerate primer designed according to the N-terminal sequence of the purified PME. The complete cDNA sequence of its precursor protein was further obtained by PCR using the same strategy. The PME clone was overexpressed in Escherichia coli, and its expressed protein was immunologically recognized as strongly as the original antigen using antibodies against purified PME. Fractionation analysis revealed that the overexpressed PME was predominantly present in the pellet and thus presumably formed insoluble inclusion bodies in E. coli cells.  相似文献   

10.
The inactivation of apple pectin methylesterase (PME) with dense phase carbon dioxide (DPCD) combined with temperatures (35-55 degrees C) is investigated. DPCD increases the susceptibility of apple PME to the temperatures and the pressures have a noticeable effect on apple PME activity. A labile and stable fraction of apple PME is present and the inactivation kinetics of apple PME by DPCD is adequately described by a two-fraction model. The kinetic rate constants k L and k S of labile and stable fractions are 0.890 and 0.039 min (-1), and the decimal reduction times D L and D S are 2.59 and 58.70 min at 30 MPa and 55 degrees C. Z T representing temperature increase needed for a 90% reduction of the D value and the activation energy E a of the labile fraction at 30 MPa is 22.32 degrees C and 86.88 kJ /mol, its Z P representing pressure increase needed for a 90% reduction of the D value and the activation volume V a at 55 degrees C is 21.75 MPa and -288.38 cm (3)/mol. The residual activity of apple PME after DPCD exhibits no reduction or reactivation for 4 weeks at 4 degrees C.  相似文献   

11.
A study of the anaerobic digestion of wastewater from the pressing of orange peel generated in orange juice production was carried out in a laboratory-scale completely stirred tank reactor at mesophilic temperature (37 degrees C). Prior to anaerobic treatment the raw wastewater was subjected to physicochemical treatment using aluminum sulfate as a flocculant and to pH reduction using a solution of sulfuric acid. The reactor was batch fed at COD loads of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 g of COD. The process was very stable for all of the loads studied, with mean pH and alkalinity values of 7.5 and 3220 mg of CaCO3/L, respectively. The anaerobic digestion of this substrate was found to follow a first-order kinetic model, from which the specific rate constants for methane production, K(G), were determined. The K(G) values decreased considerably from 0.0672 to 0.0078 L/(g h) when the COD load increased from 1.5 to 5.0 g of COD, indicating an inhibition phenomenon in the system studied. The proposed model predicted the behavior of the reactor very accurately, showing deviations of <5% between the experimental and theoretical values of methane production. The methane yield coefficient was found to be 295 mL of CH4 STP/g of COD removed, whereas the mean biodegradability of the substrate (TOC) was 88.2%. A first-order kinetic model for substrate (TOC) consumption allowed determination of the specific rate constants for substrate uptake, K(C), which also decreased with increasing loading, confirming the above-mentioned inhibition process. Finally, the evolution of the individual volatile fatty acid concentrations (acetic, C2; propionic, C3; butyric, C4; isobutyric, iC4; valeric, C5; isovaleric, iC5; and caproic, C6) with digestion time for all loads used was also studied. The main acids generated were acetic and propionic for all loads studied, facilitating the conversion into methane.  相似文献   

12.
Abstract

In a fertilizer trial in a Valencia orange orchard, two soil types were distinguished: a poorly aerated loamy sand (A) and sandy clay loam (B). Mineral composition of leaves and fruit quality characteristics differed significantly in the two soil types, regardless of the fertilizer treatments. Fruits on the sandy clay loam were larger, had a thicker peel, and contained more total acids and vitamin C in the juice, and were less affected by a peel disorder (creasing). The leaves of such trees contained more K and Mg and less Ca and P.  相似文献   

13.
The thermally tolerant pectin methylesterase (TT-PME) was isolated as a monocomponent enzyme from sweet orange fruit (Citrus sinensis var. Valencia). It was also isolated from flower and vegetative tissue. The apparent molecular weight of fruit TT-PME was 40800 by SDS-PAGE and the isoelectric point estimated as pI 9.31 by IEF-PAGE. MALDI-TOF MS identified no tryptic-peptide ions from TT-PME characteristic of previously described citrus PMEs. TT-PME did not absolutely require supplemented salt for activity, but salt activation and pH-dependent activity patterns were intermediate to those of thermolabile PMEs. Treatment of non-calcium-sensitive pectin with TT-PME (reducing the degree of methylesterification by 6%) increased the calcium-sensitive pectin ratio from 0.01 to 0.90, indicating a blockwise mode of action. TT-PME produced a significantly lower end-point degree of methylesterification at pH 7.5 than at pH 4.5. Extensive de-esterification with TT-PME did not reduce the pectin molecular weight or z-average radius of gyration, as determined by HPSEC.  相似文献   

14.
A cDNA fragment encoding an acidic pectin methylesterase (PME) of jelly fig achene was successfully expressed in Pichia pastoris under the control of the glyceraldehydes-3-phosphate dehydrogenase promoter. The recombinant PME was produced as a secretory protein by N-terminal fusion of a cleavable prepropeptide for signal trafficking, and thus easily harvested from the culture medium. Compared with native N-glycosylated PME (38 kDa) purified from jelly fig achenes, this recombinant PME (45 kDa) appeared to be hyperglycosylated. Activity staining indicated that the recombinant PME was functionally active. Yet the hyperglycosylated recombinant PME possessed thermostability and enzymatic capability over a broad pH range equivalent to those of the native PME. The success of functional production of this acidic jelly fig PME in P. pastoris has significantly broadened its applications in industry.  相似文献   

15.
Thermal inactivation kinetics have been determined for pectin methylesterase (PME), polygalacturonase (PG), and peroxidase (POD) in tomato juice. Two parameters, the inactivation rate constant (k) at a reference temperature and the activation energy for inactivation (E(a)), were determined for each enzyme. For PME and PG, the k and E(a) values reported here do not agree with those in several previously published reports. These differences can be explained either by the differences in pH values used for inactivation determinations or by inadequacies in the heating methods used in some previous studies. POD showed simple first-order inactivation kinetics and was less thermally stable than either PME or PG. When different cultivars of tomatoes were evaluated, there was no difference in the thermal inactivation kinetics of these enzymes.  相似文献   

16.
This paper describes a new procedure for obtaining hesperidin from the waste orange peel of the citrus industry. It is based on the adsorption of dilute extracts of hesperidin on a styrene-divinylbenzene (SDVB) resin and the desorption in much more reduced volumes by means of alkaline eluents. Hesperidin immediately precipitates with good yield and high purity after acidification of the concentrated solutions, thus overcoming disadvantages due to the high dilution. Different experiments were carried out to examine operating conditions in each phase of the process. Hesperidin was extracted from peel with an aqueous saturated Ca(OH)(2) solution, allowing precipitation of calcium pectates from colloidal pectins that can interfere in the subsequent phases of adsorption and separation of hesperidin. The clear extracts were neutralized to optimize adsorption on resin. The most effective eluent was 0.5 N NaOH solution containing 10% ethanol. Recycling of the crystallization liquor improved the yield and purity of the product and reduced the acid amount required for neutralizing fresh alkaline extracts. Resin must be washed after each adsorption-desorption cycle and regenerated after five cycles. Results can constitute a useful starting point for an industrial application. A flow scheme of the process is also reported.  相似文献   

17.
A proteinaceous pectin methylesterase inhibitor (PMEI) was isolated from kiwi fruit (Actinidia chinensiscv. Hayward) and purified by affinity chromatography on a cyanogen bromide (CNBr) Sepharose 4B-orange PME column. The optimal pH of banana PME activity was 7.0, whereas that for carrot and strawberry PME activity was 9.0. The optimal pH for the binding between kiwi fruit PMEI and these PMEs was 7.0. The kiwi fruit PMEI has a different affinity for PME depending on the plant source. The inhibition kinetics of kiwi fruit PMEI to banana and strawberry PME followed a noncompetitive type, whereas that to carrot PME followed a competitive type. The kiwi fruit PMEI was mixed with banana, carrot, and strawberry PME to obtain PMEI-PME complexes, which were then subjected to thermal (40-80 degrees C, atmospheric pressure) or high-pressure (10 degrees C, 100-600 MPa) treatment. Experimental data showed that the PMEI-PME complexes were easily dissociated by both thermal and high-pressure treatments.  相似文献   

18.
Pectin methylesterase (PME) from carrots (Daucus carrota L.) was extracted and purified by affinity chromatography on a CNBr-Sepharose 4B-PME inhibitor column. A single protein and PME activity peak was obtained. A biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters of carrot PME was performed. In a second step, the thermal and high-pressure stability of the enzyme was studied. Isothermal and combined isothermal-isobaric inactivation of purified carrot PME could be described by a fractional-conversion model.  相似文献   

19.
The present study examined the involvement of proteins in cloud flocculation of Valencia orange juice. Marked differences in cloud instability were found between juices of different harvest dates. Heating of enzymatic pectin degraded juice from April and June harvests resulted in development of clumps and their precipitation. Although the juice from both harvesting dates remained hazy, the juice of April harvest was more turbid than that from June. Usually clarification increases as the temperature increases from ambient to 125 degrees C. Clarification occurred at pH 2.5-4.5 and was maximal at pH 3.5. The clarification of the April harvest juice was markedly lower than that of the June harvest. The fresh juice contained about 5.2 and 1.7 mg mL(-1) insoluble cloud matter (ICM) and alcohol-insoluble serum solids (AISS), respectively. The ICM and the AISS, respectively, contained: proteins (244.5+/-8.7 and 132+/-1.8 microg mg(-1)), galacturonic acid (40+/-0 and 120+/-0 microg mg(-1)) and neutral sugars (270+/-39 and 329+/-23 microg mg(-1)). Enzymatic pectin degradation resulted in removal of a marked portion of the pectin, and was accompanied by partial removal of neutral sugars (mainly glucose and galactose) and some proteins from the pectic polymer in both AISS and ICM. Proteins of the AISS included major bands at 10-14, 20, and 28 kDa and those of the ICM bands at 22, 24, 26, and 45 kDa.  相似文献   

20.
The effect of the addition of commercial pectin to orange juice that was de-esterified by alkaline treatment or pectinmethylesterase was evaluated. Pectin at various degrees of esterification (DE) was added to reconstituted frozen orange juice concentrate, and the extent of cloud loss was determined after centrifugation. Of the five pectin treatments, percent transmittance (% T) of juice remained <5%, except for the pectin treatment with a residual methoxyl content (% DE) of <5%. Addition of 100--600 ppm of 5% DE pectin to juice resulted in % T between 36 and 73%. Despite the absence of clarification, increases in cloud particle size were observed and depended on the % DE, the amount of pectin added, and the method used to modify the pectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号