首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The F2 progeny of a third backcross(BC3) line, BC line 240, derived from a Turkish accession of wild barley (Hordeum vulgare ssp. spontaneum),segregated for resistance to scald (Rhynchosporium secalis) in a manner indicating the presence of a single dominant resistance gene. Two SCAR marker slinked to this resistance were developed from AFLP markers. Screens of disomic and ditelosomic wheat-barley addition lines with the SCAR markers demonstrated that the scald resistance gene is located in the centromeric region of barley chromosome 3H,a region previously reported to contain a major scald resistance locus, Rrs1. Markers that flank the Rrs1 locus were used to screen the wild barley-derivedBC3F2 population. These markers also flank the wild barley-derived scald resistance, indicating that it maps to the same locus as Rrs1; it may beallelic, or a separate gene within a complex locus. However, BC line 240 does not respond to treatment with the Rhynchosporium secalis avirulence factorNIP1 in the same way as the Rrs1-carrying cultivar Atlas46. This suggests that the scald resistance gene derived from wild barley confers a different specificity of response to theRrs1 allele in Atlas46.In order to increase the durability of scald resistance in the field, we suggest that at least two scald resistances should be combined into barley cultivars before release. The scald resistance gene described here will be of value in the Australian environment, and the several markers linked to it will facilitate pyramiding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

3.
J. Jensen    G. Backes    H. Skinnes  H. Giese 《Plant Breeding》2002,121(2):124-128
Three quantitative trait loci (QTL) for scald resistance in barley were identified and mapped in relation to molecular markers using a population of chromosome doubled‐haploid lines produced from the F1 generation of a cross between the spring barley varieties ‘Alexis’ and ‘Regatta’. Two field experiments were conducted in Denmark and two in Norway to assess disease resistance. The percentage leaf area covered with scald (Rhynchosporium secalis) ranged from 0 to 40% in the 189 doubled‐haploid (DH) lines analysed. One quantitative trait locus was localized in the centromeric region of chromosome 3H, Qryn3, using the MAPQTL program. MAPQTL was unable to provide proper localization of the other two resistance genes and so a non‐interval QTL mapping method was used. One was found to be located distally to markers on chromosome 4H (Qryn4) and the other, Qryn6, was located distally to markers on chromosome 6H. The effects of differences between the Qryn3, Qryn4 and Qryn6 alleles in two barley genotypes for the QTL were estimated to be 8.8%, 7.3% and 7.0%, respectively, of leaf covered by scald. No interactions between the QTLs were found.  相似文献   

4.
N.J. Kilby  J. Robinson 《Euphytica》2001,120(2):265-272
Rhynchosporium secalis (Oud.) J.J. Davis, causal agent of scald of barley (Hordeum vulgare L.), was isolated from barley, couch grass (Elymus repens L.) and rye (Secale cereale L.). Isolates were used to inoculate seedlings of a differential barley series containing several sources of major gene resistance to the disease. The series included Atlas46, (resistance gene Rrs1) and the isogenic line Atlas, which lacks the gene (rrs1). The necrosis-inducing peptide NIP1 has been suggested to be the product of the avirulence gene AvrRrs1 (NIP1) that with the barley resistance gene Rrs1 determines the incompatibility of the pathogen-host interaction. All R. secalis isolates were virulent only on the susceptible barley cultivars Arve and Chan, irrespective of spore concentration or original host species. There were no indications of redundant virulence among the R. secalis isolates. The NIP1 gene was sequenced from each isolate and there was no correlation with source of the isolate or sequence modification and virulence. Four isolates, from barley and couch grass, were characterised by a basic Type I NIP1sequence. The recorded NIP1 sequence changes are consistent withR. secalis populations not receiving selection through deployment of the Rrs1 gene in commercial barley cultivars in Finland. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary The genetic basis of resistance to scald (Rhynchosporium secalis) within barley breeding populations is poorly understood. The design of effective genetically based resistance strategies is predicated on knowledge of the identity of the resistance genes carried by potential parents. The resistance exhibited by a broad selection of western Canadian barley lines was investigated by evaluating their reactions to five R. secalis isolates. Results were compared to the resistance exhibited by previously characterized lines. This comparison, combined with pedigree analysis indicated that there are two different resistance genes present inwwestern Canadian cultivars. These genes were shown to be independent through analysis of a segregating population derived from a cross between Falcon and CDC Silky. This evidence, along with observed linkage of the gene in CDC Silky with an allele specific amplicon developed for a Rhynchosporium secalis resistance locus on chromosome 3, provides evidence that the gene in Falcon is the Rh2 gene derived from Atlas, and the gene (s) in CDC Silky is located within the Rh/Rh3/Rh4 cluster and is similar to the Rh gene in Hudson.  相似文献   

6.
A doubled haploid barley (Hordeum vulgare L.) population from a cross between the cultivar `Ingrid' and the Ethiopian landrace `Abyssinian' was mapped by AFLP, RFLP, SSR and STS markers and tested for resistance to isolates`4004', `2', `16-6', `17', `22' and `WRS 1872' of Rhynchosporium secalis (Oudem.) J.J. Davis, the causal agent of leaf scald. Resistance tests were conducted on parents, DH-lines, a near-isogenic line of `Abyssinian' (NIL) into `Ingrid', and an F2 population descended from the same F1 plants as the DHs. The DH population segregated for at least two major R. secalis resistance QTL. All isolates tested identified a major QTL on chromosome 3 (3H) associated with R. secalis resistance, in a 4 cM support interval between the co-segregating markers Bmac0209/Falc666 and MWG680. The QTL was linked with the markers Falc666 (2.3 cM), YLM/ylp (0.3 cM), MWG680 (1.7 cM), cttaca2 (2.5 cM) and agtc17 (9.8 cM). The second QTL was located on chromosome 1 (7H).However, this QTL was only detected by one isolate and was located in an interval of 16 cM in the distal part of the chromosome. At this QTL the allele for improved scald resistance originated from the parent `Ingrid'. There were a number of minor QTL on chromosomes 2 (2H), 4 (4H) and 6 (6H) that were not repeatable either across replications or analysis methods. The importance of checking QTL-models by cross-validation is stressed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Twenty Finnish isolates of Rhynchosporium secalis (Oud.) J.J. Davis, the causal agent of scald, were taken from infected barley (Hordeum vulgare L.) plants and inoculated on to seedlings of a differential series of barley containing a range of major genes for resistance to the fungus, as well as on to six Nordic 6-row spring barleys and three winter ryes (Secale cereale L.). These fungal isolates derived from four sites and three host varieties. Disease development was monitored on two leaves of seedlings in the greenhouse employing a standard scale, and on adult plants in the field by assessing the diseased area on the three uppermost leaves. A comparison was also made between the pathogenicity and virulence of ten Finnish and ten Canadian R. secalis isolates. The Finnish isolates varied in virulence, but with the exception of Algerian (CI 1179) seedlings and adult La Mesita (CI 7565) all seedlings and adult plants of the entire differential series were resistant to all isolates. Canadian isolates were, on average, less virulent than Finnish isolates. All the Nordic checks were susceptible to all Finnish and seven Canadian isolates, but differences in the degree of susceptibility were evident. Isolates of R. secalis from barley were non-pathogenic on rye, isolates from Elymus repens L. were non-pathogenic on barley and rye, and isolates from rye were only pathogenic on rye. Finnish R. secalis isolates contain no redundant pathogenic diversity. The differential series represents a useful, but as yet untapped, source of resistance to R. secalis for Finnish barley breeders.  相似文献   

8.
Summary The inheritance of resistance to coffee berry disease (CBD) has been studied by applying a preselection test to F2 progenies of a half diallel cross between 11 coffee varieties with different degrees of resistance and to sets of parental, F1, F2, B11 and B12 generations of crosses between resistant and susceptible varieties. True resistance to CBD appears to be controlled by major genes on three different loci. The highly resistant variety Rume Sudan carries the dominant R- and the recessive K-genes. The non-allelic interaction between these two genes is of a duplicate nature. The R-locus has multiple alleles with R 1R1alleles present in Rume Sudan and the somewhat less effective R 2R2alleles in a variety like Pretoria, which also has the K-gene. The moderately resistant variety K7 carries only the recessive K-gene. The arabica-like variety Hibrido de Timor (a natural interspecific arabica x robusta hybrid) carries one gene for CBD resistance on the T-locus with intermediate gene action. It probably inherited this gene from its robusta parent. There is circumstantial evidence that the resistance to CBD is of a stable nature, but it is advisable to accumulate in one genotype as many resistance genes as possible by combining in the breeding programme the resistance of Rume Sudan with that of Hibrido de Timor.  相似文献   

9.
A. Alizadeh    V. Benetti    A. Sarrafi    G. Barrault    L. Albertini 《Plant Breeding》1994,113(4):323-326
Seven barley genotypes with high genetic variability for resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) were crossed in diallel fashion to determine the inheritance of resistance to this disease. Two experiments were undertaken in a controlled growth chamber using a complete-block design with four replicates. Each replicate consisted of a row of 20 seedlings per parent or F1 hybrid. An Iranian strain of bacterial leaf streak was used for inoculation of 12-day-old seedlings. Results showed that the cultivars ‘Express’ and ‘Morex’ and the Iranian pure line Iran-3a had a high partial resistance in booth experiments. Diallel analysis showed highly significant general and specific combining abilities. ‘Morex’ and Iran-3a were the best combiners for partial resistance to bacterial leaf streak in barley and could be successfully used for breeding purposes.  相似文献   

10.
Four cold-tolerant rice varieties, viz. ‘Khonorullo’, ‘Namyi’, ‘Abor B’ and ‘Meghalaya-1’ were crossed with two cold-susceptible ones, viz. ‘Pusa 33’ and ‘Subhadra’ (DR92), in all possible combinations to study the inheritance of gene(s) governing panicle exsertion and their allelic relationship among cold-tolerant varieties. F1 hybrids of all the crosses showed complete panicle exsertion indicating dominance of this trait. Segregation pattern of panicle exsertion in F2 and backcrosses show that all the four cold-tolerant varieties possessed a single dominant gene designated as Ctr-1. Absence of segregation for panicle exsertion in an F2 generation obtained from intercrosses of cold-tolerant varieties suggests that the dominant genes in all the four cultivars are allelic.  相似文献   

11.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

12.
Summary Accessions of Hordeum vulgare ssp. spontaneum, the wild progenitor of barley, collected in Israel (70), Iran (15) and Turkey (6) were screened for seedling response to four isolates of Rhynchosporium secalis, the pathogen causing leaf scald in barley. Resistance was very common in the collection (77%) particularly among accessions from the more mesic sites (90%). The genetics of this resistance were investigated in fifteen backcross (BC3) lines that contained an isozyme variant from H.v. ssp. spontaneum in a H.v. ssp. vulgare (cv. Clipper) background and were resistant to scald. Segregation in the BC3F2 families conformed with a single dominant resistance gene in 9 of the 15 lines. Scald resistance and the isozyme marker were closely linked in three of the BC3-lines, loosely linked in four and unlinked in the remaining eight. Scald resistance genes were identified on barley chromosomes 1, 3, 4 and 6. Crosses between several of the scald resistant BC-lines together with the linkage data indicated that at least five genetically independent resistances are available for combining together for deployment in barley. The linkage of scald resistance in several BC3-lines to the isozyme locus Acp2 is of special interest as this locus is highly polymorphic in wild barley.  相似文献   

13.
R. Jonsson    T. Säll    T. Kraft  M. Gustafsson 《Plant Breeding》1999,118(4):313-317
The inheritance of seedling resistance to a Swedish isolate of Pyrenophora teres f. teres was investigated in four resistance sources of spring barley. Accessions CI 2330, CI 5791, CI 5822 and CI 9779 were used as resistance sources, and the cultivar ‘Alexis’ was used as a susceptible parent in different crosses. From the disease reaction in the F1, F2 and F3 generations it was concluded that the resistance was governed by the same two complementary genes in CI 5791, CI 822 and CI 9776. One of these genes was present in CI 2330. The first three cultivars were highly resistant to the isolate used in this investigation. These results, when combined with earlier studies, suggest that CI 5791, CI 5822 and CI 9776 may be of great value as sources of resistance to barley net blotch. Spearman's rank correlation between the disease reaction of F2 plants and their F3 progeny was highly significant (r = 0.75; P ≥ 0.001) It is suggested that selection in the F2 generation is effective. In a backcross breeding scheme, single plant reactions in F1 or F2 need to be confirmed in later generations.  相似文献   

14.
A breeding programme was developed to obtain barley yellow dwarf virus (BYDV)-resistant winter genotypes using the Yd2 gene. The aim was to incorporate the Yd2 allele into the new high-yielding genotypes to release cultivars that allow barley cultivation in areas where BYDV is endemic. The resistant lines were developed using pedigree selection. An ICARDA resistant line (83RCBB130) carrying the Yd2 gene was crossed with three susceptible, high-yielding winter varieties and their F1 lines were either selfed or backcrossed to the matching susceptible parent. The best lines selected from subsequent selfing generations were evaluated in replicated trials in the presence or absence of BYDV, starting from F6 and BC1F5 to F8 and BC1F7 generations. Four genotypes with superior agronomic traits and BYDV resistance were selected.  相似文献   

15.
Historically, conventional breeding has been the primary strategy used to develop a number of Striga‐resistant varieties currently grown in the Sahel of Western Africa. In this study, we have successfully developed and applied a marker‐assisted selection strategy that employs a single backcross programme to introgress Striga resistance into farmer preferred varieties of cowpea for the Nigeria savannas. In this strategy, we have introduced the Striga resistance gene from the donor parent IT97K‐499‐35 into an elite farmer preferred cowpea cultivar ‘Borno Brown’. The selected 47 BC1F2 populations confirmed the recombinants with desirable progeny having Striga resistance gene(s). The 28 lines selected in the BC1F2:4 generation with large seed size, brown seed coat colour and carrying marker alleles were evaluated in the field for resistance to Striga resistance. This led to the selection of a number of desirable improved lines that were immune to Striga having local genetic background with higher yield than those of their parents and standard varieties.  相似文献   

16.
Summary A 6×6 diallel was prepared to study the inheritance of leaf angle in T. aestivum L. Genetic analysis in terms of diallel cross parameters and graphic analysis indicated the control of additive gene effects in the expression of this character. The results of F1 analysis were supported by the analysis of F2 data.  相似文献   

17.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

18.
Parental, F1, F2, BC1, BC2, BC11, BC12, BC21, BC22, BC1 self and BC2 selfed generations of three crosses involving six cultivars of durum wheat (Triticum durum Desf.) were studied for grains per spike under normal and late sown environments to analyze the nature of gene effects. A 10-parameter model did not fully account for the differences among the generation means. In two cases more complex interactions or linkage were involved in the inheritance of grains per spike in durum. Both digenic and trigenic epistatic interactions had a role in controlling the inheritance of grains per spike, however, trigenic interactions contributed more than digenic interactions. Non-fixable gene effects were many times higher than fixable ones in all three crosses and in both sowing environments indicating a major role of non-additive gene effects in the inheritance of this trait. Duplicate epistasis between sets of three genes under both environments was recorded for the cross Raj 911 × DWL 5002. Epistatic interactions, particularly the trigenic ones, contributed the maximum significant heterosis. Epistatic interactions involving dominance in the F2 generations caused significant inbreeding depression. Selective diallel mating and/or biparental mating could be used for amelioration of grains per spike in durum wheat.  相似文献   

19.
The genetic basis of several different components of resistance to Rhynchosporium secalis in barley was investigated in a mapping population derived from a cross between winter and spring barley types. Both the severity of visual disease symptoms and amount of R. secalis DNA in leaf tissues were assessed in field trials in Scotland in the 2007/2008 and 2008/2009 growing seasons. Relative expression of symptoms was defined as the residual values from a linear regression of amount of R. secalis DNA against visual plot disease score at GS 50. Amount of R. secalis DNA and visual disease score were highly correlated traits and identified nearly identical QTL. The genetic control of relative expression of symptoms was less clear. However, a QTL on chromosome 7H was identified as having a significant effect on the expression of visual disease symptoms relative to overall amount of R. secalis colonisation.  相似文献   

20.
Anthracnose is a serious disease affecting dry bean production especially in the cool highland areas worldwide. The objective of this research was to study the inheritance of anthracnose resistance in market-class dry beans. A complete diallel set of crosses was generated from nine diverse parents comprising six resistant and three susceptible to anthracnose. The F1 and F2 crosses and parents were artificially inoculated with Colletotriclum lindenumthianum Race-767 in a growth room. There was significant variation for anthracnose resistance among genotypes. General combining ability (GCA) and specific combining ability effects were significant for resistance, indicating importance of both additive and non-additive effects, respectively. Preponderance of GCA effects (66%) suggested that additive effects were more important than non-additive effects (24%), which were also reflected by high heritability estimates (70%), and suggested that simple selection or backcrossing would be useful for improving the resistance in market class varieties. The study was not conclusive on whether epistatic gene action played a major role, but if available it might have biased the dominance gene effects. Reciprocal effects (10%) were not significant (P > 0.05), suggesting that cytoplasmic genes did not play a major role in modifying anthracnose resistance. Parental lines G2333, AB136, NAT002, and NAT003 showed highly negative GCA effects qualifying them as suitable parents for transferring resistance genes to their progenies. A few major genes, 1–3, displaying partial dominance conditioned anthracnose resistance, suggesting a possibility of using marker-assisted selection to improve anthracnose resistance in market-class dry beans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号