首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La(2)CuO4-y ceramics containing a few percent of Ca(2+), Sr(2+), and Ba(2+) ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba(2+)-containing samples). The onset temperature La(2)CuO4-y with Sr(2+) is higher and its superconductivity-induced diamagnetism larger than that found with Ba(2+) and Ca(2+). This is proof that the electronic change resulting from alkaline earthdoping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr(2+) is close to that of La(3+) for which it presumably substitutes.  相似文献   

2.
New phases of the type La2-xAx(l+)CUO4-y have been prepared where A(l+) is sodium or potassium. The sodium phases are superconducting for x values from 0.2 to 0.5 at temperatures up to about 40 K. In addition, there are unusual magnetic properties below about 10 K that may be indicative of spin glass behavior. Phases of the type La2-xKxCuO4-y could only be prepared with x values up to about 0.1, and these phases are not superconducting above 4.2 K.  相似文献   

3.
Very complicated inorganic solids can be self-assembled from structurally simple precursors as illustrated by the hydrothermal synthesis of the vanadium phosphate, [(CH(3))(2)NH(2)]K(4)[V(10)O(10)(H(2)O)(2)(OH)(4)(PO(4))(7)].4H(2)O, 1, which contains chiral double helices formed from interpenetrating spirals of vanadium oxo pentamers bonded together by P(5+). These double helices are in turn intertwined with each other in a manner that generates unusual tunnels and cavities that are filled with (CH(3))(2)NH(2)(+) and K(+) cations, respectively. The unit cell contents of dark blue phosphate 1, which crystallizes in the enantiomorphic space group P4(3) with lattice constants a = 12.130 and c = 30.555 angstroms, are chiral; only one enantiomorph is present in a given crystal. Magnetization measurements show that 1 is paramagnetic with ten unpaired electrons per formula unit at higher temperatures and that antiferromagnetic interactions develop at lower temperatures.  相似文献   

4.
The concept of quantum criticality is proving to be central to attempts to understand the physics of strongly correlated electrons. Here, we argue that observations on the itinerant metamagnet Sr3Ru2O7 represent good evidence for a new class of quantum critical point, arising when the critical end point terminating a line of first-order transitions is depressed toward zero temperature. This is of interest both in its own right and because of the convenience of having a quantum critical point for which the tuning parameter is the magnetic field. The relationship between the resultant critical fluctuations and novel behavior very near the critical field is discussed.  相似文献   

5.
建立了一种基于超声辅助磁性四氧化三铁纳米微粒催化过氧化氢降解亚甲蓝染料的方法,研究了四氧化三铁纳米微粒浓度、过氧化氢浓度、pH值、反应时间、超声时间和温度等对催化降解反应的影响.结果表明,当四氧化三铁纳米粒子浓度为600mg/L,过氧化氢浓度为0.32mol/L,pH值为5,超声时间为3min,温度为30℃,反应时间为2h时,模拟染料废水中亚甲蓝的去除率最高可达到95%.  相似文献   

6.
采用化学共沉淀法制备了CoFe2O4强磁性纳米微粒和p-MgFe2O4(Mg(OH)2与Fe(OH)3的混合物)弱磁性纳米微粒.并按体积比为1:1将CoFe2O4磁性液体、p-MgFe2O4顺磁磁性液体混合,得到二元CoFe2O4-p-Mg-Fe2O4磁性液体.实验结果表明混合磁性液体的磁化强度不能简单等于两种单一磁性液体磁化强度的叠加.在CoFe2O4磁性液体中,其磁性微粒在无场时会自发组装形成对磁化强度无贡献的闭合环状团聚体结构.二元磁性液体磁化时,这种CoFe2O4微粒环可能部分破裂.根据偶极子相互作用能判断CoFe2O4体系与p-MgFe2O4体系无相互作用,因此可根据单元磁性液体的磁化性质为基础来分析二元磁性液体的磁化性质.
Abstract:
Strong magnetic CoFe2O4 nanoparticles and weak magnetic p-MgFe2O4 (mixture of hydroxide Mg(OH)2 and Fe(OH)3) nanoparticles are produced by the chemical co-precipitation technology. Binary ferrofluids of CoFe2O4-p-MgFe2O4 are obtained by mixing CoFe2O4 ferrofluids and p-MgFe2O4 paramagnetic fluids in a ratio of 1: 1 (v/v). The experimental results indicate that the magnetization of the binary ferrofluid is not simple summation of the two single magnetic fluids. Without external magnetic field,some particles can self-assemble into aggregates of closed ring-like structures, which make no contribution to the magnetization for the CoFe2O4 ferofluid. In the magnetization process of the binary ferrofluid, the closed ring-like structure can partially break. Based on the interaction between two dipoles, it can be judged that there is no magnetic interaction between the CoFe2O4 magnetic system and the p-MgFe2O4 magnetic system. Therefore, the magnetization behavior of the binary ferrofluids can be analyzed based on the single magnetic fluids.  相似文献   

7.
In principle, a complex assembly of strongly interacting electrons can self-organize into a wide variety of collective states, but relatively few such states have been identified in practice. We report that, in the close vicinity of a metamagnetic quantum critical point, high-purity strontium ruthenate Sr3Ru2O7 possesses a large magnetoresistive anisotropy, consistent with the existence of an electronic nematic fluid. We discuss a striking phenomenological similarity between our observations and those made in high-purity two-dimensional electron fluids in gallium arsenide devices.  相似文献   

8.
对用共沉淀法制备的CuFe2O4磁性纳米微粒及其合成的自形成磁性液体在室温下进行磁性测量.其结果表明CuFe2O4微粒的饱和磁化强度较小,粉末与自形成磁性液体均呈超顺磁性-无剩磁、无矫顽力.用Langevin理论对测得的磁性进行了对比分析,从微粒间的相互作用解释了粉末和磁性液体的实测磁化曲线与Langevin理论的不同偏离现象.  相似文献   

9.
对用其沉淀法制备的CuFe2O4磁性纳米微粒及其合成的自形成磁性液体在室温下进行磁性测量.其结果表明CuFe2O4微粒的饱和磁化强度较小,粉末与自形成磁性液体均呈超顺磁性-无剩磁、无矫顽力.用Langevin理论对测得的磁性进行了对比分析,从微粒间的相互作用解释了粉末和磁性液体的实测磁化曲线与Langevin理论的不同偏离现象.  相似文献   

10.
Direct observations of CuO(2) sheet defect structures in superconducting La(2-x)Sr(x)CuO(4), with x in the range 0.05 crystallographic directions, by a pure shear mechanism along the edge of the octahedral copper-oxygen units. The line defects are partial screw dislocations, with characteristic displacement vectors of the type <(a/2), 0, (c/6)>, bounding the stacking faults. The existence of this type of defect demonstrates that there is an oxygen deficiency within the CuO(2) layers. However, unlike the open ReO(3) type-related structures, the packing density of the K(2)NiF(4) structure necessarily requires that anion defects be accompanied by the loss of cations of the A type (lanthanum, strontium). Under identical synthesis conditions, no defects are observed in the parent compound La(2)CuO(4).  相似文献   

11.
The oxide superconductors, particularly those recently discovered that are based on La(2)CuO(4), have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought "resonating-valence-bond" state or "quantum spin liquid" hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.  相似文献   

12.
We report atomic-scale characterization of the pseudogap state in a high-Tc superconductor, Bi2Sr2CaCu2O(8+delta). The electronic states at low energies within the pseudogap exhibit spatial modulations having an energy-independent incommensurate periodicity. These patterns, which are oriented along the copper-oxygen bond directions, appear to be a consequence of an electronic ordering phenomenon, the observation of which correlates with the pseudogap in the density of electronic states. Our results provide a stringent test for various ordering scenarios in the cuprates, which have been central in the debate on the nature of the pseudogap and the complex electronic phase diagram of these compounds.  相似文献   

13.
对采用化学共沉淀法制备的ZnFe2O4,MnFe2O4以及两者混合的3种纳米颗粒体系的磁化性质进行了实验研究.在室温下测量了它们的磁化曲线,结果表明ZnFe2O4颗粒是顺磁性的,MnFe2O4及0.8Zn Fe2O40.2MnFe2O4混合颗粒呈超顺磁性.MnFe2O4颗粒的实验曲线和无相互作用的Langevin理论曲线间有较大偏差.混合颗粒体系的磁化强度不等于单独两种颗粒的磁化强度的简单相加.应用偶极子相互作用和颗粒团聚效应解释了MnFe2O4颗粒和混合颗粒体系的磁化性质.  相似文献   

14.
Structural, magnetic, and electronic properties of compounds in the series La2-xSrx CuO4-y for 0.05 相似文献   

15.
0.8ZnFe2O4-0.2MnFe2O4纳米颗粒磁化性质的实验研究   总被引:2,自引:0,他引:2  
对采用化学共沉淀法制备的ZnFe2O4,MnFe2O4以及两者混合的3种纳米颗粒体的磁化性质进行了实验研究.在室温下测量了它们的磁化曲线,结果表明ZnFe2O4颗粒是顺磁性的,MnFe2O4及0.8Zn Fe2O4-0.2MnFe2O4混合颗粒呈超顺磁性.MnFe2O4颗粒的实验曲线和无相互作用的Langevin理论曲线间有较大偏差.混合颗粒体系的磁化强度不等于单独两种颗粒的磁化强度的简单相加.应用偶极子相互作用和颗粒团聚效应解释了MnFe2O4颗粒和混合颗粒体系的磁化性质.  相似文献   

16.
The chemical remanent magnetization (CRM) acquired when single-domain size magnetite (Fe(3)0(4)) oxidizes to maghemite (gammaFe(2)O(3)) in a 50-microtesla field at a series of 13 temperatures from 1000 to 6560C is of similar intensity to viscous remanent magnetization (VRM) acquired under the same field and temperature conditions by unoxidized magnetite. The remanences of the oxidized and unoxidized phases also have similar resistances to demagnetization. These similarities imply that the remanence of the oxidized material is a chemico-viscous remanent magnetization (CVRM) having some of the characteristics of both classic growth CRM and thermally activated VRM. At low temperatures in partially oxidized grains, VRM of the magnetite core and growth CRM of the maghemite surface layer contribute about equally to CVRM. Near the Curie point, intensity of CVRM increases to a Hopkinson-type peak. High-temperature CVRM is more resistant to demagnetization than the thermoremanent magnetization (TRM) produced from cooling through the Curie point.  相似文献   

17.
We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO3-CoFe2O4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays an important role in many devices, including transducers, field sensors, etc. Such nanostructures were deposited on single-crystal SrTiO3 (001) substrates by pulsed laser deposition from a single Ba-Ti-Co-Fe-oxide target. The films are epitaxial in-plane as well as out-of-plane with self-assembled hexagonal arrays of CoFe2O4 nanopillars embedded in a BaTiO3 matrix. The CoFe2O4 nanopillars have uniform size and average spacing of 20 to 30 nanometers. Temperature-dependent magnetic measurements illustrate the coupling between the two order parameters, which is manifested as a change in magnetization at the ferroelectric Curie temperature. Thermodynamic analyses show that the magnetoelectric coupling in such a nanostructure can be understood on the basis of the strong elastic interactions between the two phases.  相似文献   

18.
19.
The oxygen isotope effect on the superconducting transition temperature (alpha(o)) varies as a function of x in La2-xSrxCuO(4) and La2-xBaxCuO(4), with the maximum alpha(o) values (alpha(o) >/= 0.5) found for x near 0.12. This unusual x dependence implies that the isotope effect is influenced by proximity to the Abma --> P4(2)/ncm structural phase transition in these systems. Synchrotron x-ray difaction measurements reveal little change in lattice parameters or orthorhombicity due to isotope exchange in strontium-doped materials where alpha(o) > 0.5, eliminating static structural distortion as a cause of the large isotope effects. The anomalous behavior of alpha(o) in both strontium- and barium-doped materials, in combination with the previously discovered Abma --> P4(2)/ncm structural phase-transition in La(1.88)B(0.12)CuO(4), suggests that an electronic contribution to the lattice instability is present and maximizes at approximately 1/8 hole per copper atom. These observations indicate a dose connection between hole doping of the Cu-O sheets, tilting instabilities of the CuO(6) octahedra, and superconductivity in La(2)CuO(4)-based superconductors.  相似文献   

20.
Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our measurements reveal a marked dichotomy between the real- and momentum-space probes, for which charge ordering is emphasized in the tunneling measurements and photoemission is most sensitive to excitations near the node of the d-wave superconducting gap. These results emphasize the importance of momentum anisotropy in determining the complex electronic properties of the cuprates and places strong constraints on theoretical models of the charge-ordered state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号