首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tramadol is a synthetic opioid used in human medicine, and to a lesser extent in veterinary medicine, for the treatment of both acute and chronic pain. In humans, the analgesic effects are owing to the actions of both the parent compound and an active metabolite (M1). The goal of the current study was to extend current knowledge of the pharmacokinetics of tramadol and M1 following oral administration of three doses of tramadol to horses. A total of nine healthy adult horses received a single oral administration of 3, 6, and 9 mg/kg of tramadol via nasogastric tube. Blood samples were collected at time 0 and at various times up to 96 h after drug administration. Urine samples were collected until 120 h after administration. Plasma and urine samples were analyzed using liquid chromatography–mass spectrometry, and the resulting data analyzed using noncompartmental analysis. For the 3, 6, and 9 mg/kg dose groups, Cmax, Tmax, and the t1/2λ were 43.1, 90.7, and 218 ng/mL, 0.750, 2.0, and 1.5 h and 2.14, 2.25, and 2.39 h, respectively. While tramadol and M1 plasma concentrations within the analgesic range for humans were attained in the 3 and 6 mg/kg dose group, these concentrations were at the lower end of the analgesic range and were only transiently maintained. Furthermore, until effective analgesic plasma concentrations have been established in horses, tramadol should be cautiously recommended for control of pain in horses. No significant undesirable behavioral or physiologic effects were noted at any of the doses administered.  相似文献   

2.
It is well-known that old animals show physiologic and/or pathologic variation that could modify the pharmacokinetics of drugs and the related pharmacodynamic response. In order to define the most appropriate therapeutic protocol in old horses, pharmacokinetic profile and safety of naproxen were investigated in horses aged over 18 years after oral administration for 5 days at the dose of 10 mg/kg b.w./day. After the first administration, the maximum concentration (Cmax 44.21 ± 9.21 μg/mL) was reached at 2.5 ± 0.58 h post-treatment, the harmonic mean terminal half-life was 6.96 ± 1.73 h, AUC0–24h was 459.71 ± 69.95 h μg/mL, MRT was 7.44 ± 0.74 h and protein binding was 98.47 ± 2.72%. No drug accumulation occurred with repeated administrations. No clinical and laboratory changes were detected after administration of naproxen. Gastric endoscopies performed after the treatment did not show pathological changes of the gastric mucosa.  相似文献   

3.
Tramadol is a centrally acting analgesic drug that has been used clinically for the last two decades to treat moderate to moderately severe pain in humans. The present study investigated tramadol administration in horses by intravenous, intramuscular, oral as immediate-release and oral as sustained-release dosage-form routes. Seven horses were used in a four-way crossover study design in which racemic tramadol was administered at 2 mg/kg by each route of administration. Altogether, 23 blood samples were collected between 0 and 2880 min. The concentration of tramadol and its M1 metabolite were determined in the obtained plasma samples by use of an LC/MS/MS method and were used for pharmacokinetic calculations. Tramadol clearance, apparent volume of distribution at steady-state, mean residence time (MRT) and half-life after intravenous administration were 26+/-3 mL/min/kg, 2.17+/-0.52 L/kg, 83+/-10 min, and 82+/-10 min, respectively. The MRT and half-life after intramuscular administration were 155+/-23 and 92+/-14 min. The mean absorption time was 72+/-22 min and the bioavailability 111+/-39%. Tramadol was poorly absorbed after oral administration and only 3% of the administered dose was found in systemic circulation. The fate of the tramadol M1 metabolite was also investigated. M1 appeared to be a minor metabolite in horses, which could hardly be detected in plasma samples. The poor bioavailability after oral administration and the short half-life of tramadol may restrict its usefulness in clinical applications.  相似文献   

4.
The aim of the present paper was to test the oral administration of oral immediate release capsules of tramadol in dogs, to asses both its pharmacokinetic properties and its urine profile. After capsules administration of tramadol (4 mg/kg), involving eight male Beagle dogs, the concentration of tramadol and its main metabolites, M1, M2 and M5, were determined in plasma and urine using an HPLC method. The plasma concentrations of tramadol and metabolites were fitted on the basis of mono- and non-compartmental models, respectively. Tramadol was detected in plasma from 5 min up to 10 h in lesser amounts than M5 and M2, detected at similar concentrations, while M1 was detected in negligible amounts. In the urine, M5 and M1 showed the highest and smallest amount, respectively; M1 and M5 resulted widely conjugate with glucuronic acid. In conclusion, after oral administration of tramadol immediate release capsules, the absorption of the active ingredient was rapid, but its rapid metabolism quickly transformed the parental drug to high levels of M5 and M2, showing an extensive elimination via the kidney. Hence, in the dog, the oral immediate release pharmaceutical formulation of tramadol would have different pharmacokinetic behaviour than in humans.  相似文献   

5.
Tramadol is a centrally acting analgesic structurally related to codeine and morphine. The aim of the present study was to evaluate the pharmacokinetic of tramadol and its major metabolites after caudal epidural administration in the horse. Six gelding male adult horses were assigned to receive epidural administration of tramadol at 2 mg/kg. Plasma substances detection was achieved using a HPLC-FL method. Tramadol was detectable after 5 minutes up to 8 hours after epidural administration. Metabolites plasma concentrations were found under the limit of quantification of the method; however negligible amounts of M2 was detected from 30 min up to 1 hour in three subjects. In conclusion, this study shows that tramadol administered by caudal route in horses produces plasma concentrations within the extrapolated therapeutic range from humans for sufficient time to provide analgesia. Further study of the drug's safety and efficacy for the treatment of pain in horses is warranted.  相似文献   

6.
The pharmacokinetic profile and bioavailability of a long-acting formulation of cephalexin after intramuscular administration to cats was investigated. Single intravenous (cephalexin lysine salt) and intramuscular (20% cephalexin monohydrate suspension) were administered to five cats at a dose rate of 10 mg/kg. Serum disposition curves were analyzed by noncompartmental approaches. After intravenous administration, volume of distribution (Vz), total body clearance (Clt), elimination constant (λz), elimination half-life (t½λ) and mean residence time (MRT) were: 0.33 ± 0.03 L/kg; 0.14 ± 0.02 L/h kg, 0.42 ± 0.05 h−1, 1.68 ± 0.20 h and 2.11 ± 0.25 h, respectively. Peak serum concentration (Cmax), time to peak serum concentration (Tmax) and bioavailability after intramuscular administration were 15.67 ± 1.95 μg/mL, 2.00 ± 0.61 h and 83.33 ± 8.74%, respectively.  相似文献   

7.
To the date, no reports exist of the pharmacokinetics (PK) of betamethasone (BTM) sodium phosphate and betamethasone acetate administered intra‐articular (IA) into multiple joints in exercising horses. The purpose of the study was to determine the PK of BTM and HYD concentrations in plasma and urine after IA administration of a total of 30 mg BTM. Eight 4 years old Thoroughbred mares were exercised on a treadmill and BTM was administered IA. Plasma and urine BTM and HYD were determined via high performance liquid chromatography spectrometry for 6 weeks. Concentration‐time profiles of BTM and HYD in plasma and urine were used to generate PK estimates for non‐compartmental analyses and comparisons among times and HYD concentrations. BTM in plasma had greater Tmax (Tmax 0.8 h) vs. urine (Tmax 7.1 h). Urine BTM concentration (ng/mL) and amount (AUClast; h × ng/mL) were greater than plasma. HYD was suppressed for at least 3 days (<1 ng/mL) for all horses. The time of last quantifiable concentration of BTM (Tlast; hour) was not significantly different in plasma than urine. Use of highly sensitive HPLC‐MS/MS assays enabled early detection and prolonged and consistent determination of BTM in plasma and urine.  相似文献   

8.
The effect of age/body weight in the plasma disposition kinetics of ivermectin (IVM) and nitroxynil (NTX) after their co-administration as a combined formulation to sheep was studied. Sixteen (16) male sheep were allocated into two experimental groups (n = 8 each): (a) high body weight (high bw) (18-20 months old), and (b) low body weight (low bw) (6-8 months old). Animals in both groups were subcutaneously (sc) treated with IVM (200 μg/kg) and NTX (10 mg/kg) using a commercially available combined formulation (Nitromectin®, Lab. Ovejero, Spain). Blood samples were taken by jugular venopuncture before (time 0), at 2, 4, 8, 12 h and at 1, 2, 3, 5, 7, 10, 15, 20, 25, 35, 40, 50 and 60 days after administration. Recovered plasma was analysed to quantify IVM and NTX by HPLC. Higher IVM plasma concentrations were measured until 20 days post-administration in “low bw” compared to “high bw” animals, where IVM was recovered up to 35 days post-treatment. The IVM absorption process greatly differed between experimental groups. A significantly higher (p < 0.01) Cmax (36.7 ± 7.52 ng/ml) value was obtained at a delayed (p < 0.05) Tmax (48.0 ± 0.0 h) in light compared to heavy (Cmax: 8.0 ± 0.80 ng/ml; at 34.0 h) body weight sheep. IVM elimination half-life and mean residence time were significantly shorter in light compared to heavy (older) sheep. NTX mean plasma concentrations were lower in “low bw” compared to those measured in “high bw” sheep, with elimination phases declining up to 60 d post-administration in both experimental groups. The NTX AUC value in “low bw” (1188.5 ± 122.6 μg day/ml) was significantly lower (p < 0.05) than that obtained in the “high bw” (oldest) animals (1735.0 ± 155.8 μg day/ml). Shorter NTX elimination half-life and mean residence time (p < 0.01) were obtained in the youngest (“low bw”) compared to the oldest (high bw) sheep. The work reported here assessed for the first time the disposition of IVM and NTX after their combinated injection to sheep, demonstrating that animal body weight/development greatly affects the kinetic behaviour of both anthelmintic drugs.  相似文献   

9.
ObjectiveTo describe the pharmacokinetics and selected pharmacodynamic variables of codeine and its metabolites in Thoroughbred horses following a single oral administration.Study designProspective experimental study.AnimalsA total of 12 Thoroughbred horses, nine geldings and three mares, aged 4–8 years.MethodsHorses were administered codeine (0.6 mg kg–1) orally and blood was collected before administration and at various times until 120 hours post administration. Plasma and urine samples were collected and analyzed for codeine and its metabolites by liquid chromatography–mass spectrometry, and plasma pharmacokinetics were determined. Heart rate and rhythm, step counts, packed cell volume and total plasma protein were measured before and 4 hours after administration.ResultsCodeine was rapidly converted to the metabolites norcodeine, codeine-6-glucuronide (C6G), morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). Plasma codeine concentrations were best represented using a two-compartment model. The Cmax, tmax and elimination t½ were 270.7 ± 136.0 ng mL–1, 0.438 ± 0.156 hours and 2.00 ± 0.534 hours, respectively. M3G was the main metabolite detected (Cmax 492.7 ± 35.5 ng mL–1), followed by C6G (Cmax 96.1 ± 33.8 ng mL–1) and M6G (Cmax 22.3 ± 4.96 ng mL–1). Morphine and norcodeine were the least abundant metabolites with Cmax of 3.17 ± 0.95 and 1.42 ± 0.79 ng mL–1, respectively. No significant adverse or excitatory effects were observed.Conclusions and clinical relevanceFollowing oral administration, codeine is rapidly metabolized to morphine, M3G, M6G, C6G and norcodeine in horses. Plasma concentrations of M6G, a presumed active metabolite of morphine, were comparable to concentrations reported previously following administration of an analgesic dose of morphine to horses. Codeine was well tolerated based on pharmacodynamic variables and behavioral observations.  相似文献   

10.

Objective

1) To determine the pharmacokinetics of tramadol hydrochloride and its active metabolite, O-desmethyltramadol (M1), after administration through different routes in female and male C57Bl/6 mice; 2) to evaluate the stability of tramadol solutions; and 3) to identify a suitable dose regimen for prospective clinical analgesia in B6 mice.

Study design

Prospective, randomized, blinded, parallel design.

Animals

A total of 18 male and 18 female C57Bl/6 mice (20–30 g).

Methods

Mice were administered 25 mg kg?1 tramadol as a bolus [intravenously (IV), intraperitoneally (IP), subcutaneously (SQ), orally per gavage (OSgavage)] over 25 hours [orally in drinking water (OSwater) or Syrspend SF (OSSyrsp)]. Venous blood was sampled at six predetermined time points over 4 to 31 hours, depending on administration route, to determine tramadol and M1 plasma concentrations (liquid chromatography and tandem mass spectrometry detection). Pharmacokinetic parameters were described using a noncompartmental model. The stability of tramadol in water (acidified and untreated) and Syrspend SF (0.20 mg mL?1) at ambient conditions for 1 week was evaluated.

Results

After all administration routes, Cmax was >100 ng mL?1 for tramadol and >40 ng mL?1 for M1 (reported analgesic ranges in man) followed by short half-lives (2–6 hours). The mean tramadol plasma concentration after self-administration remained >100 ng mL?1 throughout consumption time. M1 was found in the OSSyrs group only at 7 hours, whereas it was detectable in OSwater throughout administration. Tramadol had low oral bioavailability (26%). Short-lasting side effects were observed only after IV administration. Water and Syrspend SF solutions were stable for 1 week.

Conclusions and clinical relevance

1) At the dose administered, high plasma concentrations of tramadol and M1 were obtained, with half-life depending on the administration route. 2) Plasma levels were stable over self-consumption time. 3) Solutions were stable for 1 week at ambient conditions.  相似文献   

11.
The purpose of this study was to determine the pharmacokinetics of tramadol and its metabolite M1 after intravenous and intramuscular administration to llamas. Tramadol, a centrally acting analgesic whose efficacy is a result of complex interactions between opiate, adrenergic and serotonin receptor systems, has been used clinically to treat moderate to severe pain in humans. The pharmacokinetic parameters of tramadol and M1 in plasma were examined following intravenous and intramuscular administration to six healthy male llamas. Tramadol half-life, volume of distribution at steady-state and clearance after intravenous administration were 2.12 ± 0.37 h, 4.02 ± 1.16 L/kg and 1728.73 ± 152.82 mL/h/kg, respectively. The bioavailability was 110 ± 21% and half-life 2.54 ± 0.31 h following intramuscular administration of tramadol. M1 had a half-life of 10.40 ± 2.90 h and 7.71 ± 0.54 h following intravenous and intramuscular administration of tramadol.  相似文献   

12.
PK-PD integration and modeling of marbofloxacin in sheep   总被引:1,自引:0,他引:1  
The fluoroquinolone antimicrobial drug, marbofloxacin, was administered intravenously (IV) and intramuscularly (IM) to sheep at a dose rate of 2 mg kg−1 in a 2-period cross-over study. Using a tissue cage model of inflammation, the pharmacokinetic properties of marbofloxacin were established for serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). For serum, after IV dosing, mean values for pharmacokinetic parameters were: clearance 0.48 L kg−1 h−1; elimination half-life 3.96 h and volumes of distribution 2.77 and 1.96 L kg−1, respectively, for Vdarea and Vss. After IM dosing mean values for pharmacokinetic variables were: absorption half-time 0.112 h, time of maximum concentration 0.57 h, terminal half-life (T½el) 3.65 h and bioavailability 106%. For exudate, mean T½el values were 12.38 and 13.25 h, respectively, after IV and IM dosing and for transudate means were 13.39 h (IV) and 12.55 h (IM).The in vitro minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and ex vivo time-kill curves for marbofloxacin in serum, exudate and transudate were established against a pathogenic strain of Mannheimia haemolytica. Integration of in vivo pharmacokinetic data with MIC determined in vitro provided mean values of area under curve (AUC)/MIC ratio for serum, exudate and transudate of 120.2, 156.0 and 156.6 h after IV dosing and 135.5, 165.3 and 146.2 h after IM dosing, respectively. After IM administration maximum concentration (Cmax)/MIC ratios were 21.1, 6.76 and 5.91, respectively, for serum, exudate and transudate. The ex vivo growth inhibition data after IM administration were fitted to the sigmoid Emax (Hill) equation to provide values for serum of AUC24 h/MIC producing, bactericidal activity (22.51 h) and virtual eradication of bacteria (35.31 h). It is proposed that these findings might be used with MIC50 or MIC90 data to provide a rational approach to the design of dosage schedules which optimise efficacy in respect of bacteriological as well as clinical cures.  相似文献   

13.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

14.
The pharmacokinetics of moxifloxacin were investigated in buffalo calves following a single intravenous and intramuscular administration of moxifloxacin (5 mg kg−1 body wt.). Moxifloxacin concentrations in plasma and urine were determined by microbiological assay. Pharmacokinetic analysis of disposition data indicated that intravenous administration data were best described by a two compartment open model, whereas intramuscular administration data were best described by a one compartment open model. Following intravenous administration, the elimination half life (t1/2β), volume of distribution (Vd(area)) and total body clearance were 2.69 ± 0.14 h, 1.43 ± 0.08 L kg−1 and 371.2 ± 11.2 ml kg−1 h−1, respectively. Following intramuscular administration, the absorption half life (t1/2ka) was 0.83 ± 0.20 h. The systemic bioavailability (F) of moxifloxacin in buffalo calves was 80.0 ± 4.08%. Urinary excretion of moxifloxacin was less than 14% after 24 h of administration of drug. In vitro binding of moxifloxacin to plasma proteins of buffalo calves was 28.4 ± 3.77%. From the data of surrogate markers (AUC/MIC, Cmax/MIC), it was determined in the buffalo calves that when administered by intravenous or intramuscular route at 5 mg kg−1, moxifloxacin is likely to be effective against bacterial isolates with MIC ? 0.1 μg ml−1.  相似文献   

15.
Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4‐methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4‐aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC‐UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax), time to maximum concentration (Tmax) and AUMC0‐last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM/AUCIV ratio of MAA was 1.06. In contrast, AUC0‐last of AA was statistically different between the groups (< 0.05) with an AUCIM/AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug.  相似文献   

16.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

17.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

18.
The objectives of this study were to determine the pharmacokinetics of toltrazuril and its metabolites in pregnant and nonpregnant ewes following a single oral dose and to determine the plasma concentrations of these compounds in milk, allantoic fluid, and newborn plasma. Eighteen healthy ewes were randomly divided into three groups (n = 6 each): pregnant ewes at 12–13 weeks of gestation (group A), nonpregnant ewes (group B), and pregnant ewes at 1–2 weeks before expected lambing date (group C). Ewes in all groups received a single oral dose of toltrazuril at 20 mg/kg body weight. In groups A and B, blood samples were collected at 1, 3, 5, 7, 9, 12, 15, 18 hr, every 6 hr to day 3, every 12 hr to day 7 and thereafter every 24 hr to day 14 post-toltrazuril administration. In group C, parturition was induced 24–36 hr after toltrazuril administration then milk, allantoic fluid, and newborn plasma samples were collected immediately after birth. Drug metabolites were assayed using ultra high-performance liquid chromatography–ultraviolet detection method (UHPLC-UV). The maximum concentration (Cmax), area under the plasma concentration-time curve (AUC0–t), AUC to 24 and 48 hr (AUC0–24), and (AUC0–48) were significantly higher in pregnant ewes. Longer apparent half-life (T1/2), significantly higher apparent volume of distribution (Vd/F) and total clearance (Cl/F) were observed in nonpregnant ewes. The time to maximum plasma concentration (Tmax), mean residence time (MRT) and elimination rate constant (Kel) were similar in both groups. The AUC0–24 and AUC0–48 were significantly higher in nonpregnant ewes. The AUC0–t was significantly higher in pregnant ones. The ratio of plasma toltrazuril concentrations in ewes and toltrazuril concentrations in newborn lambs' plasma, allantoic fluid, and milk were 68%, 2.3%, and 5.3%, respectively. Results of this study showed that toltrazuril is well absorbed after a single oral dose in ewes with widespread distribution in different body tissues.  相似文献   

19.
Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine, and dogs in some countries. Metamizole is rapidly hydrolyzed to the active primary metabolite 4-methyl-amino-antipyrine (MAA). MAA is formed in much larger amounts compared to other minor metabolites. Among the other secondary metabolites, 4-amino-antipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after administration of 25 mg/kg MT by intravenous (IV) and intramuscular (IM) routes in healthy donkeys. Six jennies were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study. Blood was collected at predetermined times within 24 hours, and plasma was analyzed by a validated HPLC UV method. Plasma concentrations of MAA after IV and IM administrations of MT were detectable from 5 minutes to 10 hours in all the donkeys. Plasma concentrations of AA were detectable from 5 minutes to 8 hours, but in smaller amounts. Cmax (P < .01), AUC0-last, AUC0-∞, AUMC0-last, and MRT (P < .05) were statistically different between the IV and IM groups. The AUCIM/AUCIV ratio of MAA was 1.37. The AA concentrations were lower than those found for MAA. The AA plasma versus time curves profiles after the two routes of administration of MT were variable (within the groups) and different (between the groups). Tmax, λz, and AUC0-last were found to be statistically different between the groups (P < .05). The AUCIM AA/AUCIV AA ratio was 2.26.  相似文献   

20.
The influence of methimazole on the plasma disposition kinetics of fenbendazole, oxfendazole and their metabolites, was investigated in adult sheep. The two anthelmintics were administered by oral drench at 5 mg kg−1 either alone (control treatments) or together with methimazole given orally at 3 mg kg−1. Blood samples were taken serially for 144 hours. Fenbendazole parent drug and its sulphoxide and sulphone metabolites were the three analytes observed by high performance liquid chromatography ( ) after the administration of both anthelmintics. The disposition of each analyte followed a similar pattern after the administration of the two anthehnintics alone. Oxfendazole was the main component recovered in plasma between four and 120 to 144 hours after the administration of both anthelmintics either with or without methimazole. A modified pattern of disposition, with significantly higher Cmax and values for fenbendazole parent drug, and a delayed appearance in plasma with retarded Tmax values for the sulphoxide and sulphone metabolites, were the main pharmacokinetic changes observed when the drugs were administered with methimazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号