首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fructosamine, a glycated serum protein, was evaluated as an index of glycemic control in normal and diabetic cats. Fructosamine was determined manually by use of a modification of an automated method. The within-run precision was 2.4 to 3.2%, and the day-to-day precision was 2.7 to 3.1%. Fructosamine was found to be stable in serum samples stored for 1 week at 4 C and for 2 weeks at -20 C. The reference range for serum fructosamine concentration in 31 clinically normal colony cats was 2.19 to 3.47 mmol/L (mean, 2.83 +/- 0.32 mmol/L). In 27 samples from 16 cats with poorly controlled diabetes mellitus, the range for fructosamine concentration was 3.04 to 8.83 mmol/L (mean, 5.93 +/- 1.35 mmol/L). Fructosamine concentration was directly and highly correlated to blood glucose concentration. Fructosamine concentration also remained high in consort with increased blood glucose concentration in cats with poorly controlled diabetes mellitus over extended periods. It is concluded that measurement of serum fructosamine concentration can be a valuable adjunct to blood glucose monitoring to evaluate glycemic control in diabetic cats. The question of whether fructosamine can replace glucose for monitoring control of diabetes mellitus requires further study.  相似文献   

2.
Determination of serum fPLI concentrations in cats with diabetes mellitus   总被引:1,自引:1,他引:0  
Diabetes mellitus (DM) is one of the most common feline endocrinopathies. Pancreatitis is a reported cause for poor control of DM in cats; however, its prevalence in diabetic cats is unknown. Measurement of serum feline pancreatic lipase immunoreactivity (fPLI) has been proposed as a sensitive and specific test for the detection of pancreatitis in cats. The aim of this study was to assess fPLI concentrations in diabetic cats and compare these with non-diabetic cats of similar age. Samples from 29 cats with DM and 23 non-diabetic cats were analysed. Serum fPLI concentrations were significantly higher in samples from diabetic cats (P<0.01). A weak association was found between serum fructosamine and fPLI concentrations (R(2)=0.355, P=0.015), but there was no association between fPLI concentrations and the degree of diabetic control. There were no significant differences in reported clinical signs between cats with or without DM regardless of serum fPLI concentration. This is the first study to demonstrate elevated serum fPLI concentrations in cats with DM, suggesting that pancreatitis could be a significant comorbidity in these cats.  相似文献   

3.
Serum fructosamine concentrations were measured in 35 healthy cats and in 30 hyperthyroid cats before and 30 days after curative radioiodine ((131)I) treatment. Hyperthyroid cats were divided into those with 30 day post-treatment total thyroxine (T4) concentrations within (EuT4) or below (HypoT4) the reference range. The median (semi-interquartile range, SIR) fructosamine concentration was significantly lower in hyperthyroid compared with healthy cats (295. 0 (18.5) micromol l(-1)) both before (254.0 (27.6) micromol l(-1)) and after (268.5 (28.0) micromol l(-1)) treatment (P < 0.001 in each case). (131)I therapy was associated with increases in serum fructosamine (mean increase 20.4 micromol l(-1), P = 0.039) and total protein (6.3 g l(-1), P < 0.002) in the HypoT4 group and in globulin concentration in both EuT4 (5.9 g l(-), P < 0.002) and HypoT4 (5.2 g l(-1), P = 0.023) groups. There were no direct relationships between the observed elevations in fructosamine concentration and those in total protein or globulin concentrations suggesting that the effect may be due to reduced rates of protein turnover. Reduced values may need to be considered when interpreting serum fructosamine concentrations for monitoring the degree of glycaemic control in diabetic cats with concurrent hyperthyroidism.  相似文献   

4.
OBJECTIVE: To determine the prevalence of systemic hypertension in cats with diabetes mellitus and establish ranges for echocardiographic variables in diabetic cats. DESIGN: Prospective study. ANIMALS: 14 cats with diabetes mellitus and 19 healthy control cats. PROCEDURE: Systolic blood pressure was measured indirectly with a noninvasive Doppler technique. Ophthalmic and echocardiographic examinations were performed, and urine protein concentration was measured. Cats were considered to have hypertension if they had systolic blood pressure > 180 mm Hg and at least 1 other clinical abnormality typically associated with hypertension (eg, hypertensive retinopathy, left ventricular hypertrophy, or proteinuria). RESULTS: None of the diabetic or control cats had systolic blood pressure > 180 mm Hg. One diabetic cat had left ventricular hypertrophy, but systolic blood pressure was 174 mm Hg. None of the cats had evidence of hypertensive retinopathy or proteinuria. Mean values for echocardiographic variables for the diabetic cats were not significantly different from published values for healthy cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that hypertension does not occur or occurs in only a small percentage of cats with diabetes mellitus.  相似文献   

5.
The use of portable blood glucose meters (PBGM) has become common in veterinary medicine as a rapid means of monitoring animals' blood glucose in a variety of medical conditions. These hand-held monitors allow for diagnostic and therapeutic decisions to be made quickly and relatively inexpensively using only a small amount of blood. Both in conditions resulting in hyperglycemia, such as diabetes mellitus, and in those resulting in hypoglycemia, such as sepsis or the presence of an insulinoma, veterinarians have come to rely on PBGM to provide critical information on the status of their animal patients. In particular, PBGM are frequently used to measure individual blood glucose values in an animal over a period to create a blood glucose curve when evaluating the effectiveness of insulin therapy in diabetic dogs and cats.  相似文献   

6.
OBJECTIVE: To compare blood glucose (BG) concentrations measured with a portable blood glucose meter in blood samples obtained with a marginal ear vein (MEV) nick technique, from a peripheral venous catheter, and by direct venipuncture in healthy cats and cats with diabetes mellitus. DESIGN: Prospective study. ANIMALS: 1 0 healthy cats and 11 cats with diabetes mellitus. Procedure-On day 1, blood samples were collected every hour for 10 hours by the MEV nick technique and from a peripheral venous catheter. On day 2, blood samples were collected every hour for 10 hours by the MEV nick technique and by direct venipuncture of the medial saphenous vein. RESULTS: For all cats, mean BG concentration for samples collected by the MEV nick technique was not significantly different from mean concentration for samples obtained from the peripheral venous catheter. For healthy cats, mean BG concentration for samples collected by the MEV nick technique was not significantly different from mean concentration for samples obtained by direct venipuncture. For cats with diabetes mellitus, mean BG concentration for samples collected by the MEV nick technique was significantly different from mean concentration for samples obtained by direct venipuncture; however, for the range of concentrations examined, this difference was not clinically important. Conclusions and Clinical Relevance: Results suggest that for the range of concentrations examined, the MEV nick technique is a reasonable alternative to venous blood collection for serial measurement of BG concentrations in cats.  相似文献   

7.
This study reports on a spectrophotometric assay for the determination of serum fructosamine concentration. The assay was evaluated for use in canine serum samples by assessment of the precision, accuracy, detectability and stability of serum fructosamine during storage. To evaluate the diagnostic usefulness of the assay, both the effect of acute changes in blood glucose on serum fructosamine concentration and the serum fructosamine concentration in canine diabetes mellitus and other canine diseases were studied.The main conclusions can be summarized as follows: Determination of canine serum fructosamines may be achieved by a precise and accurate assay with a detection limit well below the serum fructosamine concentration normally found in canine sera. Storage for 5 days at +4°C or +25°C, or for 28 days at –20°C caused no significant change in serum fructosamine concentration. The concentration is not affected by acute changes in blood glucose. In diabetic dogs, serum fructosamine concentration is significantly greater than in dogs with other diseases.  相似文献   

8.
The aim of the study was to determine the time required for plasma fructosamine concentration to increase after the onset of hyperglycaemia and decrease after resolution of hyperglycaemia. Healthy cats (n=14) were infused to maintain either moderate hyperglycaemia (n=5) (actual mean glucose 17 mmol/l) or marked hyperglycaemia (n=9) (actual 29 mmol/l) for 42 days. Fructosamine exceeded the upper limit of the reference range (331 micromol/l) after 3-5 days of marked hyperglycaemia, took 20 days to plateau and, after cessation of infusion, took 5 days to return to baseline. Fructosamine concentration for moderate hyperglycaemia took longer to exceed the reference range (7 days, range 4-14 days), and fewer days to plateau (8 days) and return to baseline (1 day). In cats with moderate hyperglycaemia, fructosamine concentration mostly fluctuated under the upper limit of the reference range. The range of fructosamine concentrations associated with a given glucose concentration was wide. The critical difference for fructosamine was 33 micromol/l.  相似文献   

9.
The effect of a high insoluble-fiber (IF) diet containing 15% cellulose in dry matter, high soluble-fiber (SF) diet containing 15% pectin in dry matter, and low-fiber (LF) diet on glycemic control in 6 dogs with alloxan-induced insulin-dependent diabetes mellitus was evaluated. Each diet contained greater than 50% digestible carbohydrate in dry matter. A crossover study was used with each dog randomly assigned to a predetermined diet sequence. Each dog was fed each diet for 56 days. Caloric intake was adjusted weekly as needed to maintain each dog within 1.5 kg of its body weight measured prior to induction of diabetes mellitus. All dogs were given pork lente insulin and half of their daily caloric intake at 12-hour intervals. Mean (+/- SEM) daily caloric intake was significantly (P less than 0.05) less when dogs consumed the IF diet vs the SF and LF diets (66 +/- 3 kcal/kg, 81 +/- 5 kcal/kg, and 79 +/- 4 kcal/kg, respectively). Serum alkaline phosphatase activity was significantly (P less than 0.05) higher when dogs consumed the LF diet vs the IF and SF diets (182 +/- 37 IU/L, 131 +/- 24 IU/L, and 143 +/- 24 IU/L, respectively). Mean postprandial plasma glucose concentration measured every 2 hours for 24 hours, beginning at the time of the morning insulin injection, was significantly (P less than 0.05) lower at most blood sampling times in dogs fed IF and SF diets, compared with dogs fed the LF diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Changes in glycosylated hemoglobin (GHb) concentrations, K values (% disappearance of glucose/min after an intravenous injection of 1 g/kg dextrose), and blood glucose concentrations were examined in eight cats before and during the induction of diabetes, and in four of these cats after they were placed on insulin treatment. There was a statistically significant separation of GHb, K values, and fasting blood glucose concentrations between healthy and diabetic cats. Changes in GHb correlated best with the K value and single weekly fasting glucose concentrations averaged over eight periods for each cat while diabetes was induced (R = 0.80 and 0.78, respectively); however, fasting blood glucose concentrations obtained on the day of the GHb measurement were also highly correlated (R = 0.69; P < 0.001). The correlation between GHb and single weekly glucose concentrations obtained in insulin-treated cats at the time of insulin peak action and averaged over an 8-wk time period for each cat was less but still significant (R = 0.53; P < 0.001). It is concluded that GHb measurements are a simple and reliable way to monitor changes in glucose control in the diabetic cat over a prolonged period.  相似文献   

12.
Diabetes mellitus (DM) is a common endocrinopathy of cats and humans. Although few studies have examined the effects of DM on the pulmonary system, changes in pulmonary function and immunology in humans with type I and II diabetes, and pulmonary lesions in a murine diabetic model have been documented. Our objective was to determine whether pulmonary lesions occurred in cats with DM. Medical records and necropsy evaluations of 42 cats with DM were compared with those of 45 age-matched, nondiabetic cats for the presence of clinical evidence of respiratory disease and pulmonary histopathological findings at the time of necropsy. No statistical difference was noted in the presence of clinical evidence of respiratory disease between cats with diabetes and control cats. Nevertheless, there was a significant association between the presence of abnormal pulmonary histopathology and DM (P = .018, odds ratio = 3 inclusive of all cats; P = .005, odds ratio = 5 when non-DM cats with overt clinical evidence of respiratory disease were excluded). Pulmonary abnormalities detected by histopathological examination in cats with diabetes included congestion and edema, histiocytosis, pneumonia, smooth muscle hypertrophy, fibrosis, mineralization, neoplasia, and type II pneumocyte hyperplasia. The observed association between DM and pulmonary lesions in cats, independent of clinical evidence of respiratory disease, emphasizes the need for careful assessment of the respiratory tract in sick cats with diabetes.  相似文献   

13.
Thirteen cats with diabetes mellitus were evaluated. Clinical signs included polydipsia, polyuria, polyphagia, lethargy, and weight loss. Results of physical examination included obesity, hepatomegaly, mild seborrhea sicca, muscle wasting, and dehydration. One cat walked plantigrade and was suspected of having a diabetic neuropathy. Persistent hyperglycemia, glucosuria, high liver enzyme activities, hypercholesterolemia, hyperproteinemia, and low electrolyte concentrations were the common laboratory findings. In 3 cats diabetes mellitus developed after megestrol acetate therapy; 2 of these cats required only temporary insulin treatment. In a 3rd cat, which had no history of receiving diabetogenic drug therapy, remission of diabetes mellitus also was observed. Serum insulin and plasma glucose concentrations were determined in 6 cats after administration of an intermediate-acting insulin (isophane insulin) and in 3 cats after administration of a long-acting insulin (protamine zinc insulin). The insulin concentration peaked 2 to 6 hours after the injection of intermediate-acting insulin and 6 to 12 hours after the injection of long-acting insulin. The lowest glucose concentration was recorded 4 to 8 hours after injection of intermediate-acting insulin, and 6 to 12 hours after injection of long-acting insulin. It was concluded that, although insulin therapy must be adjusted to the individual, the diabetic cat usually requires twice-daily administration of isophane insulin; however, the protamine zinc insulin can be given once daily for satisfactory control.  相似文献   

14.
OBJECTIVE: To determine the effect of hyperthyroidism on serum fructosamine concentration in cats. DESIGN: Cohort study. ANIMALS: 22 cats with overt hyperthyroidism. PROCEDURE: Hyperthyroidism was diagnosed on the basis of clinical signs, detection of a palpable thyroid gland, and high total serum thyroxine (T4) concentrations. Hyperthyroid cats with abnormal serum albumin, total protein, and glucose concentrations were excluded from the study. Samples for determination of serum fructosamine concentration were obtained prior to initiating treatment. Results were compared with fructosamine concentrations in healthy cats, cats in which diabetes had recently been diagnosed, and cats with hypoproteinemia. In 6 cats, follow-up measurements were obtained 2 and 6 weeks after initiating treatment with carbimazole. RESULTS: Serum fructosamine concentrations ranged from 154 to 267 mumol/L (median, 198 mumol/L) and were significantly lower than values in healthy cats. Eleven (50%) of the hyperthyroid cats had serum fructosamine concentrations less than the reference range. Serum fructosamine concentrations in hyperthyroid, normoproteinemic cats did not differ from values in hypoproteinemic cats. During treatment, an increase in serum fructosamine concentration was detected. CONCLUSIONS AND CLINICAL RELEVANCE: In hyperthyroid cats, concentration of serum fructosamine may be low because of accelerated protein turnover, independent of blood glucose concentration. Serum fructosamine concentrations should not be evaluated in cats with overt hyperthyroidism and diabetes mellitus. Additionally, concentration of serum fructosamine in hyperthyroid cats should not be used to differentiate between diabetes mellitus and transitory stress-related hyperglycemia.  相似文献   

15.
This article describes the clinical presentation of diabetes mellitus in cats and dogs, including the types of diabetes, signalment, history, physical examination findings, and laboratory diagnosis. Newer diagnostic tests such as serum fructosamine concentrations and arginine response rate are also briefly discussed.  相似文献   

16.
17.
18.
Fructosamines are formed when glucose reacts non-enzymatically with amino groups on proteins, and previous studies have indicated that the serum fructosamine concentration could be of importance in the diagnosis of canine diabetes mellitus. Owing to the connection between the protein/albumin concentration and serum fructosamine concentration, it has been suggested that the serum fructosamine concentration should be corrected for the protein/albumin concentration. Thus, the purpose of the present study was to evaluate the uncorrected serum fructosamine concentration and various protein and albumin corrections of the serum fructosamine concentration in the separation of dogs with diabetes mellitus from dogs with other diseases that presented with clinical signs suggestive of diabetes mellitus. The evaluation was assisted by relative operating characteristic curves (ROC curves), which may be used to compare various diagnostic tests under equivalent conditions (equal true positive ratios or false positive ratios) and over the entire range of cutoff values. A total of 58 dogs (15 dogs with diabetes mellitus and 43 dogs with other diseases) were included in the study. Serum fructosamine concentration, serum total protein concentration and serum albumin concentration were measured in each dog, and various corrections of the serum fructosamine concentration for protein or albumin concentration were made. Comparing the ROC curves of the uncorrected and each corrected serum fructosamine concentration indicated that there was no decisive difference between the uncorrected and the corrected serum fructosamine concentrations in discriminating between dogs with and without diabetes mellitus. Hence, correcting the serum fructosamine concentration as a routine procedure cannot be advocated from the results of the study. Moreover, the sensitivity and specificity of the uncorrected serum fructosamine concentration were very high, 0.93 and 0.95, respectively, further evidence of the value of the uncorrected serum fructosamine concentration in the diagnosis of canine diabetes mellitus.Abbreviations SFC serum fructosamine concentration - SFC-P serum fructosamine concentration corrected for the actual serum total protein concentration - SFC-A serum fructosamine concentration corrected for the actual serum albumin concentration - SFC-Po serum fructosamine concentration corrected for the actual serum total protein concentration, only when the serum total protein concentration is outside the reference interval - SFC-Ao serum fructosamine concentration corrected for the actual serum albumin concentration, only when the serum albumin concentration is outside the reference interval - SFC-K serum fructosamine concentration corrected according to Kawamotoet al. (1992)  相似文献   

19.
OBJECTIVE: To evaluate owner compliance with longterm home monitoring of blood glucose concentrations in diabetic cats and assess the influence of home monitoring on the frequency of reevaluation of those cats at a veterinary hospital. DESIGN: Retrospective study. ANIMALS: 26 cats with diabetes mellitus. PROCEDURE: Medical records of diabetic cats for which home monitoring was undertaken were reviewed, and owners were contacted by telephone. Signalment, laboratory test results, insulin treatment regimen, details of home monitoring, clinical signs during treatment, frequency of follow-up examinations, and survival times were evaluated. RESULTS: Monitoring of cats commenced within 12 weeks (median, 3 weeks) after initial evaluation; 8 owners were unable to perform home monitoring, and 1 cat was euthanatized after 1 week. In 17 cats, duration of home monitoring was 4.8 to 46.0 months (median, 22.0 months); 6 cats died after 7.0 to 18.0 months (median, 13.0 months). In 11 cats, home monitoring was ongoing at completion of the study (12.0 to 46.0 months' duration). Fourteen owners completed blood glucose curves every 2 to 4 weeks. Cats managed with home monitoring received higher dosages of insulin, compared with cats that were not monitored. Four of 17 cats managed by home monitoring had transient resolution of diabetes mellitus for as long as 1 year. Home monitoring did not affect the frequency of reevaluation at the veterinary hospital. CONCLUSIONS AND CLINICAL RELEVANCE: Owner compliance with long-term home monitoring appeared to be satisfactory, and home monitoring did not affect the frequency of reevaluation of patients by veterinarians.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号